Discover the most talked about and latest scientific content & concepts.

Concept: Ligand-gated ion channel


Although the activity of the nicotinic acetylcholine receptor (nAChR) is exquisitely sensitive to its membrane environment, the underlying mechanisms remain poorly defined. The homologous prokaryotic pentameric ligand gated ion channel, GLIC, represents an excellent model for probing the molecular basis of nAChR sensitivity due to its high structural homology, ease of expression, and amenability to crystallographic analysis. We show here that membrane-reconstituted GLIC exhibits structural and biophysical properties similar to those of membrane-reconstituted nAChR, although GLIC is substantially more thermally stable. GLIC, however, does not possess the same exquisite lipid sensitivity. In particular, GLIC does not exhibit the same propensity to adopt an uncoupled conformation where agonist binding is uncoupled from channel gating. Structural comparisons provide insight into the chemical features that may predispose the nAChR to the formation of an uncoupled state.

Concepts: Receptor, Acetylcholine, Ion channels, Myasthenia gravis, Muscarinic acetylcholine receptor, Nicotinic acetylcholine receptor, Acetylcholine receptor, Ligand-gated ion channel


Neurotransmitter corelease is emerging as a common theme of central neuromodulatory systems. Though corelease of glutamate or GABA with acetylcholine has been reported within the cholinergic system, the full extent is unknown. To explore synaptic signaling of cholinergic forebrain neurons, we activated choline acetyltransferase expressing neurons using channelrhodopsin while recording post-synaptic currents (PSCs) in layer 1 interneurons. Surprisingly, we observed PSCs mediated by GABAA receptors in addition to nicotinic acetylcholine receptors. Based on PSC latency and pharmacological sensitivity, our results suggest monosynaptic release of both GABA and ACh. Anatomical analysis showed that forebrain cholinergic neurons express the GABA synthetic enzyme Gad2 and the vesicular GABA transporter (Slc32a1). We confirmed the direct release of GABA by knocking out Slc32a1 from cholinergic neurons. Our results identify GABA as an overlooked fast neurotransmitter utilized throughout the forebrain cholinergic system. GABA/ACh corelease may have major implications for modulation of cortical function by cholinergic neurons.

Concepts: Nicotine, Neurotransmitter, Acetylcholine, Myasthenia gravis, Muscarinic acetylcholine receptor, Nicotinic acetylcholine receptor, GABAA receptor, Ligand-gated ion channel


Gintonin is a novel ginseng-derived lysophosphatidic acid (LPA) receptor ligand. Oral administration of gintonin ameliorates learning and memory dysfunctions in Alzheimer’s disease (AD) animal models. The brain cholinergic system plays a key role in cognitive functions. The brains of AD patients show a reduction in acetylcholine concentration caused by cholinergic system impairments. However, little is known about the role of LPA in the cholinergic system. In this study, we used gintonin to investigate the effect of LPA receptor activation on the cholinergic system in vitro and in vivo using wild-type and AD animal models. Gintonin induced [Ca2+]i transient in cultured mouse hippocampal neural progenitor cells (NPCs). Gintonin-mediated [Ca2+]i transients were linked to stimulation of acetylcholine release through LPA receptor activation. Oral administration of gintonin-enriched fraction (25, 50, or 100 mg/kg, 3 weeks) significantly attenuated scopolamine-induced memory impairment. Oral administration of gintonin (25 or 50 mg/kg, 2 weeks) also significantly attenuated amyloid-β protein (Aβ)-induced cholinergic dysfunctions, such as decreased acetylcholine concentration, decreased choline acetyltransferase (ChAT) activity and immunoreactivity, and increased acetylcholine esterase (AChE) activity. In a transgenic AD mouse model, long-term oral administration of gintonin (25 or 50 mg/kg, 3 months) also attenuated ADrelated cholinergic impairments. In this study, we showed that activation of G protein-coupled LPA receptors by gintonin is coupled to the regulation of cholinergic functions. Furthermore, this study showed that gintonin could be a novel agent for the restoration of cholinergic system damages due to Aβ and could be utilized for AD prevention or therapy.

Concepts: Alzheimer's disease, Brain, Animal testing, Receptor, Progenitor cell, In vivo, Acetylcholine, Ligand-gated ion channel


Female mosquitoes that transmit deadly diseases locate human hosts by detecting exhaled CO2 and skin odor. The identities of olfactory neurons and receptors required for attraction to skin odor remain a mystery. Here, we show that the CO2-sensitive olfactory neuron is also a sensitive detector of human skin odorants in both Aedes aegypti and Anopheles gambiae. We demonstrate that activity of this neuron is important for attraction to skin odor, establishing it as a key target for intervention. We screen ∼0.5 million compounds in silico and identify several CO2 receptor ligands, including an antagonist that reduces attraction to skin and an agonist that lures mosquitoes to traps as effectively as CO2. Analysis of the CO2 receptor ligand space provides a foundation for understanding mosquito host-seeking behavior and identifies odors that are potentially safe, pleasant, and affordable for use in a new generation of mosquito control strategies worldwide. PAPERCLIP:

Concepts: Mosquito, Receptor, Cell signaling, Ligand, Receptor antagonist, Aedes aegypti, Aedes, Ligand-gated ion channel


Current efforts to repair damaged or diseased mammalian retinas are inefficient and largely incapable of fully restoring vision. Conversely, the zebrafish retina is capable of spontaneous regeneration upon damage using Müller glia (MG)-derived progenitors. Understanding how zebrafish MG initiate regeneration may help develop new treatments that prompt mammalian retinas to regenerate. We show that inhibition of γ-aminobutyric acid (GABA) signaling facilitates initiation of MG proliferation. GABA levels decrease following damage, and MG are positioned to detect decreased ambient levels and undergo dedifferentiation. Using pharmacological and genetic approaches, we demonstrate that GABAA receptor inhibition stimulates regeneration in undamaged retinas while activation inhibits regeneration in damaged retinas.

Concepts: Neuron, Retina, Enzyme inhibitor, Zebrafish, Benzodiazepine, GABAA receptor, Ligand-gated ion channel, GABA receptor


Locusts are one of the world’s most destructive agricultural pests and represent a useful model system in entomology. Here we present a draft 6.5 Gb genome sequence of Locusta migratoria, which is the largest animal genome sequenced so far. Our findings indicate that the large genome size of L. migratoria is likely to be because of transposable element proliferation combined with slow rates of loss for these elements. Methylome and transcriptome analyses reveal complex regulatory mechanisms involved in microtubule dynamic-mediated synapse plasticity during phase change. We find significant expansion of gene families associated with energy consumption and detoxification, consistent with long-distance flight capacity and phytophagy. We report hundreds of potential insecticide target genes, including cys-loop ligand-gated ion channels, G-protein-coupled receptors and lethal genes. The L. migratoria genome sequence offers new insights into the biology and sustainable management of this pest species, and will promote its wide use as a model system.

Concepts: DNA, Gene, Organism, Genome, RNA, Insect, Plasmid, Ligand-gated ion channel


Ionotropic glutamate receptors (iGluRs) mediate neurotransmission at the majority of excitatory synapses in the brain. Little is known, however, about how glutamate reaches the recessed binding pocket in iGluR ligand-binding domains (LBDs). Here we report the process of glutamate binding to a prototypical iGluR, GluA2, in atomistic detail using unbiased molecular simulations. Charged residues on the LBD surface form pathways that facilitate glutamate binding by effectively reducing a three-dimensional diffusion process to a spatially constrained, two-dimensional one. Free energy calculations identify residues that metastably bind glutamate and help guide it into the binding pocket. These simulations also reveal that glutamate can bind in an inverted conformation and also reorient while in its pocket. Electrophysiological recordings demonstrate that eliminating these transient binding sites slows activation and deactivation, consistent with slower glutamate binding and unbinding. These results suggest that binding pathways have evolved to optimize rapid responses of AMPA-type iGluRs at synapses.

Concepts: Action potential, Neuroscience, Ligand, NMDA receptor, Metabotropic glutamate receptor, Glutamate receptor, Ligand-gated ion channel, Neuropsychopharmacology


Multiple sclerosis is among the most common causes of neurological disability in young adults. Here we provide the preclinical proof of concept of the benefit of a novel strategy of treatment for multiple sclerosis targeting neuroendothelial N-methyl-D-aspartate glutamate receptors. We designed a monoclonal antibody against N-methyl-D-aspartate receptors, which targets a regulatory site of the GluN1 subunit of N-methyl-D-aspartate receptor sensitive to the protease tissue plasminogen activator. This antibody reverted the effect of tissue plasminogen activator on N-methyl-D-aspartate receptor function without affecting basal N-methyl-D-aspartate receptor activity (n = 21, P < 0.01). This antibody bound N-methyl-D-aspartate receptors on the luminal surface of neurovascular endothelium in human tissues and in mouse, at the vicinity of tight junctions of the blood-spinal cord barrier. Noteworthy, it reduced human leucocyte transmigration in an in vitro model of the blood-brain barrier (n = 12, P < 0.05). When injected during the effector phase of MOG-induced experimental autoimmune encephalomyelitis (n = 24), it blocked the progression of neurological impairments, reducing cumulative clinical score (P < 0.001) and mean peak score (P < 0.001). This effect was observed in wild-type animals but not in tissue plasminogen activator knock-out animals (n = 10). This therapeutic effect was associated to a preservation of the blood-spinal cord barrier (n = 6, P < 0.001), leading to reduced leucocyte infiltration (n = 6, P < 0.001). Overall, this study unveils a critical function of endothelial N-methyl-D-aspartate receptor in multiple sclerosis, and highlights the therapeutic potential of strategies targeting the protease-regulated site of N-methyl-D-aspartate receptor.

Concepts: Immune system, Protein, Multiple sclerosis, Neurology, NMDA receptor, Tissue plasminogen activator, Plasmin, Ligand-gated ion channel


Sorting nexin 27 (SNX27), a brain-enriched PDZ domain protein, regulates endocytic sorting and trafficking. Here we show that Snx27(-/-) mice have severe neuronal deficits in the hippocampus and cortex. Although Snx27(+/-) mice have grossly normal neuroanatomy, we found defects in synaptic function, learning and memory and a reduction in the amounts of ionotropic glutamate receptors (NMDA and AMPA receptors) in these mice. SNX27 interacts with these receptors through its PDZ domain, regulating their recycling to the plasma membrane. We demonstrate a concomitant reduced expression of SNX27 and CCAAT/enhancer binding protein β (C/EBPβ) in Down’s syndrome brains and identify C/EBPβ as a transcription factor for SNX27. Down’s syndrome causes overexpression of miR-155, a chromosome 21-encoded microRNA that negatively regulates C/EBPβ, thereby reducing SNX27 expression and resulting in synaptic dysfunction. Upregulating SNX27 in the hippocampus of Down’s syndrome mice rescues synaptic and cognitive deficits. Our identification of the role of SNX27 in synaptic function establishes a new molecular mechanism of Down’s syndrome pathogenesis.

Concepts: Protein, Gene, Cell, Brain, Signal transduction, NMDA receptor, Ligand-gated ion channel, AMPA receptor


The medium chain triglyceride ketogenic diet is an established treatment for drug-resistant epilepsy that increases plasma levels of decanoic acid and ketones. Recently, decanoic acid has been shown to provide seizure control in vivo, yet its mechanism of action remains unclear. Here we show that decanoic acid, but not the ketones β-hydroxybutryate or acetone, shows antiseizure activity in two acute ex vivo rat hippocampal slice models of epileptiform activity. To search for a mechanism of decanoic acid, we show it has a strong inhibitory effect on excitatory, but not inhibitory, neurotransmission in hippocampal slices. Using heterologous expression of excitatory ionotropic glutamate receptor AMPA subunits in Xenopus oocytes, we show that this effect is through direct AMPA receptor inhibition, a target shared by a recently introduced epilepsy treatment perampanel. Decanoic acid acts as a non-competitive antagonist at therapeutically relevant concentrations, in a voltage- and subunit-dependent manner, and this is sufficient to explain its antiseizure effects. This inhibitory effect is likely to be caused by binding to sites on the M3 helix of the AMPA-GluA2 transmembrane domain; independent from the binding site of perampanel. Together our results indicate that the direct inhibition of excitatory neurotransmission by decanoic acid in the brain contributes to the anti-convulsant effect of the medium chain triglyceride ketogenic diet.

Concepts: Protein, Neurology, Epilepsy, NMDA receptor, Anticonvulsant, Ligand-gated ion channel, Ketogenic diet, AMPA receptor