SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Life

473

Physical activity (PA) has an established favorable impact on cardiovascular disease (CVD) outcomes and quality of life. In this study, we aimed to estimate the economic effect of moderate-vigorous PA on medical expenditures and utilization from a nationally representative cohort with and without CVD.

Concepts: Medicine, Disease, Life, Cardiovascular disease, Economics, Non-infectious disease, Cost

455

Scaling laws underpin unifying theories of biodiversity and are among the most predictively powerful relationships in biology. However, scaling laws developed for plants and animals often go untested or fail to hold for microorganisms. As a result, it is unclear whether scaling laws of biodiversity will span evolutionarily distant domains of life that encompass all modes of metabolism and scales of abundance. Using a global-scale compilation of ∼35,000 sites and ∼5.6⋅10(6) species, including the largest ever inventory of high-throughput molecular data and one of the largest compilations of plant and animal community data, we show similar rates of scaling in commonness and rarity across microorganisms and macroscopic plants and animals. We document a universal dominance scaling law that holds across 30 orders of magnitude, an unprecedented expanse that predicts the abundance of dominant ocean bacteria. In combining this scaling law with the lognormal model of biodiversity, we predict that Earth is home to upward of 1 trillion (10(12)) microbial species. Microbial biodiversity seems greater than ever anticipated yet predictable from the smallest to the largest microbiome.

Concepts: Photosynthesis, Archaea, Bacteria, Organism, Life, Eukaryote, Species, Microorganism

369

Low reproducibility rates within life science research undermine cumulative knowledge production and contribute to both delays and costs of therapeutic drug development. An analysis of past studies indicates that the cumulative (total) prevalence of irreproducible preclinical research exceeds 50%, resulting in approximately US$28,000,000,000 (US$28B)/year spent on preclinical research that is not reproducible-in the United States alone. We outline a framework for solutions and a plan for long-term improvements in reproducibility rates that will help to accelerate the discovery of life-saving therapies and cures.

Concepts: Scientific method, Medicine, Life, United States, Therapy, Science, U.S. state, Philosophy of science

367

Reconstructing the phylogenetic relationships that unite all lineages (the tree of life) is a grand challenge. The paucity of homologous character data across disparately related lineages currently renders direct phylogenetic inference untenable. To reconstruct a comprehensive tree of life, we therefore synthesized published phylogenies, together with taxonomic classifications for taxa never incorporated into a phylogeny. We present a draft tree containing 2.3 million tips-the Open Tree of Life. Realization of this tree required the assembly of two additional community resources: (i) a comprehensive global reference taxonomy and (ii) a database of published phylogenetic trees mapped to this taxonomy. Our open source framework facilitates community comment and contribution, enabling the tree to be continuously updated when new phylogenetic and taxonomic data become digitally available. Although data coverage and phylogenetic conflict across the Open Tree of Life illuminate gaps in both the underlying data available for phylogenetic reconstruction and the publication of trees as digital objects, the tree provides a compelling starting point for community contribution. This comprehensive tree will fuel fundamental research on the nature of biological diversity, ultimately providing up-to-date phylogenies for downstream applications in comparative biology, ecology, conservation biology, climate change, agriculture, and genomics.

Concepts: Evolution, Biology, Life, Species, Ecology, Phylogenetic tree, Phylogenetics, Cladistics

361

Here, I argue that computational thinking and techniques are so central to the quest of understanding life that today all biology is computational biology. Computational biology brings order into our understanding of life, it makes biological concepts rigorous and testable, and it provides a reference map that holds together individual insights. The next modern synthesis in biology will be driven by mathematical, statistical, and computational methods being absorbed into mainstream biological training, turning biology into a quantitative science.

Concepts: Scientific method, Evolution, Mathematics, Biology, Life, Species, Sociology, Logic

343

As an important extrinsic source of mortality, harvest should select for fast reproduction and accelerated life histories. However, if vulnerability to harvest depends upon female reproductive status, patterns of selectivity could diverge and favor alternative reproductive behaviors. Here, using more than 20 years of detailed data on survival and reproduction in a hunted large carnivore population, we show that protecting females with dependent young, a widespread hunting regulation, provides a survival benefit to females providing longer maternal care. This survival gain compensates for the females' reduced reproductive output, especially at high hunting pressure, where the fitness benefit of prolonged periods of maternal care outweighs that of shorter maternal care. Our study shows that hunting regulation can indirectly promote slower life histories by modulating the fitness benefit of maternal care tactics. We provide empirical evidence that harvest regulation can induce artificial selection on female life history traits and affect demographic processes.

Concepts: Human, Male, Reproduction, Female, Life, Reproductive system, Hermaphrodite, Selection

271

 To test whether the number of reports of enjoyment of life over a four year period is quantitatively associated with all cause mortality, and with death from cardiovascular disease and from other causes.

Concepts: Longitudinal study, Research methods, Epidemiology, Disease, Causality, Death, Life, Sociology

261

Agitation is a common, challenging symptom affecting large numbers of people with dementia and impacting on quality of life (QoL). There is an urgent need for evidence-based, cost-effective psychosocial interventions to improve these outcomes, particularly in the absence of safe, effective pharmacological therapies. This study aimed to evaluate the efficacy of a person-centred care and psychosocial intervention incorporating an antipsychotic review, WHELD, on QoL, agitation, and antipsychotic use in people with dementia living in nursing homes, and to determine its cost.

Concepts: Life, The Canon of Medicine, Randomized controlled trial, Effectiveness, Quality, Quality of life, Intervention, Impact event

252

In urban ecosystems, socioeconomics contribute to patterns of biodiversity. The ‘luxury effect’, in which wealthier neighbourhoods are more biologically diverse, has been observed for plants, birds, bats and lizards. Here, we used data from a survey of indoor arthropod diversity (defined throughout as family-level richness) from 50 urban houses and found that house size, surrounding vegetation, as well as mean neighbourhood income best predict the number of kinds of arthropods found indoors. Our finding, that homes in wealthier neighbourhoods host higher indoor arthropod diversity (consisting of primarily non-pest species), shows that the luxury effect can extend to the indoor environment. The effect of mean neighbourhood income on indoor arthropod diversity was particularly strong for individual houses that lacked high surrounding vegetation ground cover, suggesting that neighbourhood dynamics can compensate for local choices of homeowners. Our work suggests that the management of neighbourhoods and cities can have effects on biodiversity that can extend from trees and birds all the way to the arthropod life in bedrooms and basements.

Concepts: Evolution, Life, Species, Ecology, Natural environment, Sustainability, Biome, House

250

Taxonomic details of diversity are an essential scaffolding for biology education, yet outdated methods for teaching the tree of life (TOL), as implied by textbook content and usage, are still commonly employed. Here, we show that the traditional approach only vaguely represents evolutionary relationships, fails to denote major events in the history of life, and relies heavily on memorizing near-meaningless taxonomic ranks. Conversely, a clade-based strategy-focused on common ancestry, monophyletic groups, and derived functional traits-is explicitly based on Darwin’s “descent with modification,” provides students with a rational system for organizing the details of biodiversity, and readily lends itself to active learning techniques. We advocate for a phylogenetic classification that mirrors the TOL, a pedagogical format of increasingly complex but always hierarchical presentations, and the adoption of active learning technologies and tactics.

Concepts: Evolution, Life, Species, Education, Phylogenetic tree, Phylogenetics, Cladistics, Charles Darwin