Discover the most talked about and latest scientific content & concepts.

Concept: Life expectancy


Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data were collected by the National Center for Health Statistics. In 2017, 1,688,780 new cancer cases and 600,920 cancer deaths are projected to occur in the United States. For all sites combined, the cancer incidence rate is 20% higher in men than in women, while the cancer death rate is 40% higher. However, sex disparities vary by cancer type. For example, thyroid cancer incidence rates are 3-fold higher in women than in men (21 vs 7 per 100,000 population), despite equivalent death rates (0.5 per 100,000 population), largely reflecting sex differences in the “epidemic of diagnosis.” Over the past decade of available data, the overall cancer incidence rate (2004-2013) was stable in women and declined by approximately 2% annually in men, while the cancer death rate (2005-2014) declined by about 1.5% annually in both men and women. From 1991 to 2014, the overall cancer death rate dropped 25%, translating to approximately 2,143,200 fewer cancer deaths than would have been expected if death rates had remained at their peak. Although the cancer death rate was 15% higher in blacks than in whites in 2014, increasing access to care as a result of the Patient Protection and Affordable Care Act may expedite the narrowing racial gap; from 2010 to 2015, the proportion of blacks who were uninsured halved, from 21% to 11%, as it did for Hispanics (31% to 16%). Gains in coverage for traditionally underserved Americans will facilitate the broader application of existing cancer control knowledge across every segment of the population. CA Cancer J Clin 2017. © 2017 American Cancer Society.

Concepts: Life expectancy, Mortality rate, American Cancer Society, United States, Death, Demography, Medical statistics, Epidemiology


This paper’s findings suggest that an arbitrary Chinese policy that greatly increases total suspended particulates (TSPs) air pollution is causing the 500 million residents of Northern China to lose more than 2.5 billion life years of life expectancy. The quasi-experimental empirical approach is based on China’s Huai River policy, which provided free winter heating via the provision of coal for boilers in cities north of the Huai River but denied heat to the south. Using a regression discontinuity design based on distance from the Huai River, we find that ambient concentrations of TSPs are about 184 μg/m(3) [95% confidence interval (CI): 61, 307] or 55% higher in the north. Further, the results indicate that life expectancies are about 5.5 y (95% CI: 0.8, 10.2) lower in the north owing to an increased incidence of cardiorespiratory mortality. More generally, the analysis suggests that long-term exposure to an additional 100 μg/m(3) of TSPs is associated with a reduction in life expectancy at birth of about 3.0 y (95% CI: 0.4, 5.6).

Concepts: Mortality rate, Life expectancy


Background Thirty-day risk-standardized mortality rates after acute myocardial infarction are commonly used to evaluate and compare hospital performance. However, it is not known whether differences among hospitals in the early survival of patients with acute myocardial infarction are associated with differences in long-term survival. Methods We analyzed data from the Cooperative Cardiovascular Project, a study of Medicare beneficiaries who were hospitalized for acute myocardial infarction between 1994 and 1996 and who had 17 years of follow-up. We grouped hospitals into five strata that were based on case-mix severity. Within each case-mix stratum, we compared life expectancy among patients admitted to high-performing hospitals with life expectancy among patients admitted to low-performing hospitals. Hospital performance was defined by quintiles of 30-day risk-standardized mortality rates. Cox proportional-hazards models were used to calculate life expectancy. Results The study sample included 119,735 patients with acute myocardial infarction who were admitted to 1824 hospitals. Within each case-mix stratum, survival curves of the patients admitted to hospitals in each risk-standardized mortality rate quintile separated within the first 30 days and then remained parallel over 17 years of follow-up. Estimated life expectancy declined as hospital risk-standardized mortality rate quintile increased. On average, patients treated at high-performing hospitals lived between 0.74 and 1.14 years longer, depending on hospital case mix, than patients treated at low-performing hospitals. When 30-day survivors were examined separately, there was no significant difference in unadjusted or adjusted life expectancy across hospital risk-standardized mortality rate quintiles. Conclusions In this study, patients admitted to high-performing hospitals after acute myocardial infarction had longer life expectancies than patients treated in low-performing hospitals. This survival benefit occurred in the first 30 days and persisted over the long term. (Funded by the National Heart, Lung, and Blood Institute and the National Institute of General Medical Sciences Medical Scientist Training Program.).

Concepts: Hospital, Mortality rate, Myocardial infarction, Life expectancy


Leisure time physical activity reduces the risk of premature mortality, but the years of life expectancy gained at different levels remains unclear. Our objective was to determine the years of life gained after age 40 associated with various levels of physical activity, both overall and according to body mass index (BMI) groups, in a large pooled analysis.

Concepts: Demography, Mass, Personal life, Death, Obesity, Life expectancy, Actuarial science, Body mass index


Behaviours such as smoking, poor diet, physical inactivity, and unhealthy alcohol consumption are leading risk factors for death. We assessed the Canadian burden attributable to these behaviours by developing, validating, and applying a multivariable predictive model for risk of all-cause death.

Concepts: Government of Canada, Life expectancy, Ontario, Canada, Yeast, Saudi Arabia, Death


The reproductive-cell cycle theory of aging posits that reproductive hormone changes associated with menopause and andropause drive senescence via altered cell cycle signaling. Using data from the Wisconsin Longitudinal Study (n = 5,034), we analyzed the relationship between longevity and menopause, including other factors that impact “ovarian lifespan” such as births, oophorectomy, and hormone replacement therapy. We found that later onset of menopause was associated with lower mortality, with and without adjusting for additional factors (years of education, smoking status, body mass index, and marital status). Each year of delayed menopause resulted in a 2.9% reduction in mortality; after including a number of additional controls, the effect was attenuated modestly but remained statistically significant (2.6% reduction in mortality). We also found that no other reproductive parameters assessed added to the prediction of longevity, suggesting that reproductive factors shown to affect longevity elsewhere may be mediated by age of menopause. Thus, surgical and natural menopause at age 40, for example, resulted in identical survival probabilities. These results support the maintenance of the hypothalamic-pituitary-gonadal axis in homeostasis in prolonging human longevity, which provides a coherent framework for understanding the relationship between reproduction and longevity.

Concepts: Oophorectomy, Life expectancy, Gerontology, Organism, Hormone, Senescence, Ageing, Menopause


Driven by technological progress, human life expectancy has increased greatly since the nineteenth century. Demographic evidence has revealed an ongoing reduction in old-age mortality and a rise of the maximum age at death, which may gradually extend human longevity. Together with observations that lifespan in various animal species is flexible and can be increased by genetic or pharmaceutical intervention, these results have led to suggestions that longevity may not be subject to strict, species-specific genetic constraints. Here, by analysing global demographic data, we show that improvements in survival with age tend to decline after age 100, and that the age at death of the world’s oldest person has not increased since the 1990s. Our results strongly suggest that the maximum lifespan of humans is fixed and subject to natural constraints.

Concepts: Aging, Mortality rate, Senescence, Longevity, Maximum life span, Gerontology, Demography, Life expectancy


The 2010 cholera epidemic in Haiti was one of the largest cholera epidemics ever recorded. To estimate the magnitude of the death toll during the first wave of the epidemic, we retrospectively conducted surveys at 4 sites in the northern part of Haiti. Overall, 70,903 participants were included; at all sites, the crude mortality rates (19.1-35.4 deaths/1,000 person-years) were higher than the expected baseline mortality rate for Haiti (9 deaths/1,000 person-years). This finding represents an excess of 3,406 deaths (2.9-fold increase) for the 4.4% of the Haiti population covered by these surveys, suggesting a substantially higher cholera mortality rate than previously reported.

Concepts: Population ecology, Life expectancy, Pandemic, Population, Mortality rate, Death, Demography, Epidemiology


The human lifespan has traversed a long evolutionary and historical path, from short-lived primate ancestors to contemporary Japan, Sweden, and other longevity frontrunners. Analyzing this trajectory is crucial for understanding biological and sociocultural processes that determine the span of life. Here we reveal a fundamental regularity. Two straight lines describe the joint rise of life expectancy and lifespan equality: one for primates and the second one over the full range of human experience from average lifespans as low as 2 y during mortality crises to more than 87 y for Japanese women today. Across the primate order and across human populations, the lives of females tend to be longer and less variable than the lives of males, suggesting deep evolutionary roots to the male disadvantage. Our findings cast fresh light on primate evolution and human history, opening directions for research on inequality, sociality, and aging.

Concepts: Life, Demography, World population, Maximum life span, Human, Population, Primate, Life expectancy