Discover the most talked about and latest scientific content & concepts.

Concept: Levant


The Canaanites inhabited the Levant region during the Bronze Age and established a culture that became influential in the Near East and beyond. However, the Canaanites, unlike most other ancient Near Easterners of this period, left few surviving textual records and thus their origin and relationship to ancient and present-day populations remain unclear. In this study, we sequenced five whole genomes from ∼3,700-year-old individuals from the city of Sidon, a major Canaanite city-state on the Eastern Mediterranean coast. We also sequenced the genomes of 99 individuals from present-day Lebanon to catalog modern Levantine genetic diversity. We find that a Bronze Age Canaanite-related ancestry was widespread in the region, shared among urban populations inhabiting the coast (Sidon) and inland populations (Jordan) who likely lived in farming societies or were pastoral nomads. This Canaanite-related ancestry derived from mixture between local Neolithic populations and eastern migrants genetically related to Chalcolithic Iranians. We estimate, using linkage-disequilibrium decay patterns, that admixture occurred 6,600-3,550 years ago, coinciding with recorded massive population movements in Mesopotamia during the mid-Holocene. We show that present-day Lebanese derive most of their ancestry from a Canaanite-related population, which therefore implies substantial genetic continuity in the Levant since at least the Bronze Age. In addition, we find Eurasian ancestry in the Lebanese not present in Bronze Age or earlier Levantines. We estimate that this Eurasian ancestry arrived in the Levant around 3,750-2,170 years ago during a period of successive conquests by distant populations.

Concepts: Mediterranean Sea, Neolithic, Fertile Crescent, Lebanon, Levant, Syria, Mesopotamia, Mediterranean


Before the Syrian uprising that began in 2011, the greater Fertile Crescent experienced the most severe drought in the instrumental record. For Syria, a country marked by poor governance and unsustainable agricultural and environmental policies, the drought had a catalytic effect, contributing to political unrest. We show that the recent decrease in Syrian precipitation is a combination of natural variability and a long-term drying trend, and the unusual severity of the observed drought is here shown to be highly unlikely without this trend. Precipitation changes in Syria are linked to rising mean sea-level pressure in the Eastern Mediterranean, which also shows a long-term trend. There has been also a long-term warming trend in the Eastern Mediterranean, adding to the drawdown of soil moisture. No natural cause is apparent for these trends, whereas the observed drying and warming are consistent with model studies of the response to increases in greenhouse gases. Furthermore, model studies show an increasingly drier and hotter future mean climate for the Eastern Mediterranean. Analyses of observations and model simulations indicate that a drought of the severity and duration of the recent Syrian drought, which is implicated in the current conflict, has become more than twice as likely as a consequence of human interference in the climate system.

Concepts: Climate change, Atmospheric pressure, Jordan, Fertile Crescent, Lebanon, Iraq, Levant, Syria


For many, climate change is no longer recognized as the primary cause of cultural changes in the Near East. Instead, human landscape degradation, population growth, socioeconomic adjustments, and conflict have been proposed as the mechanisms that shaped the Neolithic Revolution. However, as Bar-Yosef noted, even if there is chronological correlation between climate changes and cultural developments, what is important is to understand how Neolithic societies dealt with these improving or deteriorating environments. Changes in bifacial stone tools provide a framework for examining some of these interactions by focusing on changing land use practices during the Neolithization process. The results of microwear analysis of 40 bifacial artifacts from early Pre-Pottery Neolithic (EPPNB) levels at Motza in the Judean hills document changes during the PPNA-PPNB transition at the onset of the Levantine Moist Period (ca. 8000 cal B.C.) when conditions for agriculture improved. EPPNB villagers added heavy-duty axes to a toolkit they had used for carpentry and began to clear forests for fields and grazing lands. Sustainable forest management continued for the duration of the PPN until the cumulative effects of tree-felling and overgrazing seem to have led to landscape degradation at end of the Pre-Pottery Neolithic C (PPNC), when a cold, dry climatic anomaly (6600-6000 cal B.C.) may have accelerated the reduction of woodlands. Early PPNB components at sites like Motza, with data from nearly five millennia of Neolithic occupations, show how complex hunter-gatherers and early food producers were able to establish sustainable resource management systems even as climate changed, population increased, and social relations were redefined.

Concepts: Climate change, Change, Neolithic, Fertile Crescent, Stone Age, Levant, Göbekli Tepe, Pre-Pottery Neolithic A


The Late Bronze Age world of the Eastern Mediterranean, a rich linkage of Aegean, Egyptian, Syro-Palestinian, and Hittite civilizations, collapsed famously 3200 years ago and has remained one of the mysteries of the ancient world since the event’s retrieval began in the late 19(th) century AD/CE. Iconic Egyptian bas-reliefs and graphic hieroglyphic and cuneiform texts portray the proximate cause of the collapse as the invasions of the “Peoples-of-the-Sea” at the Nile Delta, the Turkish coast, and down into the heartlands of Syria and Palestine where armies clashed, famine-ravaged cities abandoned, and countrysides depopulated. Here we report palaeoclimate data from Cyprus for the Late Bronze Age crisis, alongside a radiocarbon-based chronology integrating both archaeological and palaeoclimate proxies, which reveal the effects of abrupt climate change-driven famine and causal linkage with the Sea People invasions in Cyprus and Syria. The statistical analysis of proximate and ultimate features of the sequential collapse reveals the relationships of climate-driven famine, sea-borne-invasion, region-wide warfare, and politico-economic collapse, in whose wake new societies and new ideologies were created.

Concepts: Mediterranean Sea, Turkey, Ancient Egypt, Egypt, Bronze Age, Levant, Nile, Mesopotamia


In this article, we focus on the analysis of dyed textile fragments uncovered at an early Iron Age (11th-10th centuries BCE) copper smelting site during new excavations in the Timna Valley conducted by the Central Timna Valley (CTV) Project, as well as those found by the Arabah Expedition at the Hathor Temple (Site 200), dated to the Late Bronze/early Iron Ages (13th-11th centuries BCE). Analysis by HPLC-DAD identified two organic dyestuffs, Rubia tinctorum L. and indigotin, from a plant source (probably Isatis tinctoria L.). They are among the earliest plants known in the dyeing craft and cultivated primarily for this purpose. This study provides the earliest evidence of textiles dyed utilizing a chemical dyeing process based on an industrial dyeing plant from the Levant. Moreover, our results shed new light on the society operating the copper mines at the time, suggesting the existence of an elite that was interested in these high quality textiles and invested efforts in procuring them by long-distance trade.

Concepts: Iron, Copper, Bronze Age, Levant, Smelting, Mesopotamia, Iron Age, 2nd millennium BC


Rare mitochondrial lineages with relict distributions can sometimes be disproportionately informative about deep events in human prehistory. We have studied one such lineage, haplogroup R0a, which uniquely is most frequent in Arabia and the Horn of Africa, but is distributed much more widely, from Europe to India. We conclude that: (1) the lineage ancestral to R0a is more ancient than previously thought, with a relict distribution across the Mediterranean/Southwest Asia; (2) R0a has a much deeper presence in Arabia than previously thought, highlighting the role of at least one Pleistocene glacial refugium, perhaps on the Red Sea plains; (3) the main episode of dispersal into Eastern Africa, at least concerning maternal lineages, was at the end of the Late Glacial, due to major expansions from one or more refugia in Arabia; (4) there was likely a minor Late Glacial/early postglacial dispersal from Arabia through the Levant and into Europe, possibly alongside other lineages from a Levantine refugium; and (5) the presence of R0a in Southwest Arabia in the Holocene at the nexus of a trading network that developed after ~3 ka between Africa and the Indian Ocean led to some gene flow even further afield, into Iran, Pakistan and India.

Concepts: Human, Africa, Indian Ocean, Jordan, Prehistory, Red Sea, Levant, Somalia


Modern human dispersal into Europe is thought to have occurred with the start of the Upper Paleolithic around 50,000-40,000 y ago. The Levantine corridor hypothesis suggests that modern humans from Africa spread into Europe via the Levant. Ksâr ‘Akil (Lebanon), with its deeply stratified Initial (IUP) and Early (EUP) Upper Paleolithic sequence containing modern human remains, has played an important part in the debate. The latest chronology for the site, based on AMS radiocarbon dates of shell ornaments, suggests that the appearance of the Levantine IUP is later than the start of the first Upper Paleolithic in Europe, thus questioning the Levantine corridor hypothesis. Here we report a series of AMS radiocarbon dates on the marine gastropod Phorcus turbinatus associated with modern human remains and IUP and EUP stone tools from Ksâr 'Akil. Our results, supported by an evaluation of individual sample integrity, place the EUP layer containing the skeleton known as “Egbert” between 43,200 and 42,900 cal B.P. and the IUP-associated modern human maxilla known as “Ethelruda” before ∼45,900 cal B.P. This chronology is in line with those of other Levantine IUP and EUP sites and demonstrates that the presence of modern humans associated with Upper Paleolithic toolkits in the Levant predates all modern human fossils from Europe. The age of the IUP-associated Ethelruda fossil is significant for the spread of modern humans carrying the IUP into Europe and suggests a rapid initial colonization of Europe by our species.

Concepts: Human, Africa, Thought, Chimpanzee, Neanderthal, Pleistocene, Prehistory, Levant


The Late Epipalaeolithic Natufian (~14,600 - 11,500 cal BP) is a key period in the prehistory of southwest Asia. Often described as a complex hunting and gathering society with increased sedentism, intensive plant exploitation and associated with an increase in artistic and symbolic material culture, it is positioned between the earlier Upper- and Epi-Palaeolithic and the early Neolithic, when plant cultivation and subsequently animal domestication began. The Natufian has thus often been seen as a necessary pre-adaptation for the emergence of Neolithic economies in southwest Asia. Previous work has pointed to the Mediterranean woodland zone of the southern Levant as the ‘core zone’ of the Early Natufian. Here we present a new sequence of 27 AMS radiocarbon dates from the Natufian site Shubayqa 1 in northeast Jordan. The results suggest that the site was occupied intermittently between ~14,600 - 12,000 cal BP. The dates indicate the Natufian emerged just as early in eastern Jordan as it did in the Mediterranean woodland zone. This suggests that the origins and development of the Natufian were not tied to the ecological conditions of the Mediterranean woodlands, and that the evolution of this hunting and gathering society was more complex and heterogeneous than previously thought.

Concepts: Israel, Western Asia, Jordan, Neolithic, Fertile Crescent, Levant, Syria, Mesolithic


The Levant is a region in the Near East with an impressive record of continuous human existence and major cultural developments since the Paleolithic period. Genetic and archeological studies present solid evidence placing the Middle East and the Arabian Peninsula as the first stepping-stone outside Africa. There is, however, little understanding of demographic changes in the Middle East, particularly the Levant, after the first Out-of-Africa expansion and how the Levantine peoples relate genetically to each other and to their neighbors. In this study we analyze more than 500,000 genome-wide SNPs in 1,341 new samples from the Levant and compare them to samples from 48 populations worldwide. Our results show recent genetic stratifications in the Levant are driven by the religious affiliations of the populations within the region. Cultural changes within the last two millennia appear to have facilitated/maintained admixture between culturally similar populations from the Levant, Arabian Peninsula, and Africa. The same cultural changes seem to have resulted in genetic isolation of other groups by limiting admixture with culturally different neighboring populations. Consequently, Levant populations today fall into two main groups: one sharing more genetic characteristics with modern-day Europeans and Central Asians, and the other with closer genetic affinities to other Middle Easterners and Africans. Finally, we identify a putative Levantine ancestral component that diverged from other Middle Easterners ∼23,700-15,500 years ago during the last glacial period, and diverged from Europeans ∼15,900-9,100 years ago between the last glacial warming and the start of the Neolithic.

Concepts: Arabian Peninsula, United Arab Emirates, Middle East, Islam, Western Asia, Jordan, Near East, Levant


The Phoenicians emerged in the Northern Levant around 1800 BCE and by the 9th century BCE had spread their culture across the Mediterranean Basin, establishing trading posts, and settlements in various European Mediterranean and North African locations. Despite their widespread influence, what is known of the Phoenicians comes from what was written about them by the Greeks and Egyptians. In this study, we investigate the extent of Phoenician integration with the Sardinian communities they settled. We present 14 new ancient mitogenome sequences from pre-Phoenician (~1800 BCE) and Phoenician (~700-400 BCE) samples from Lebanon (n = 4) and Sardinia (n = 10) and compare these with 87 new complete mitogenomes from modern Lebanese and 21 recently published pre-Phoenician ancient mitogenomes from Sardinia to investigate the population dynamics of the Phoenician (Punic) site of Monte Sirai, in southern Sardinia. Our results indicate evidence of continuity of some lineages from pre-Phoenician populations suggesting integration of indigenous Sardinians in the Monte Sirai Phoenician community. We also find evidence of the arrival of new, unique mitochondrial lineages, indicating the movement of women from sites in the Near East or North Africa to Sardinia, but also possibly from non-Mediterranean populations and the likely movement of women from Europe to Phoenician sites in Lebanon. Combined, this evidence suggests female mobility and genetic diversity in Phoenician communities, reflecting the inclusive and multicultural nature of Phoenician society.

Concepts: Africa, Mediterranean Sea, Middle East, Italy, Egypt, Lebanon, Levant, Phoenicia