SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Leachate

28

In this research, the capability of lateritic soil used as coagulant for the treatment of stabilized leachate from the Penang-Malaysia Landfill Site was investigated. The evaluation of lateritic soil coagulant in comparison with commercialized chemical coagulants, such as alum, was performed using conventional jar test experiments. The optimum pH and coagulant dosage were identified for the lateritic soil coagulant and the comparative alum coagulant. It was found that the application of lateritic soil coagulant was quite efficient in the removal of COD, color and ammoniacal-nitrogen content from the landfill leachate. The optimal pH value was 2.0, while 14 g/L of lateritic soil coagulant was sufficient in removing 65.7% COD, 81.8% color and 41.2% ammoniacal-nitrogen. Conversely, the optimal pH and coagulant dosage for the alum were pH 4.8 and 10 g/L respectively, where 85.4% COD, 96.4% color and 47.6% ammoniacal-nitrogen were removed from the same leachate sample. Additionally, the Sludge Volume Index (SVI) ratio of alum and lateritic soil coagulant was 53:1, which indicated that less sludge was produced and was an environmentally friendly product. Therefore, lateritic soil coagulant can be considered a viable alternative in the treatment of landfill leachate.

Concepts: Blood, Soil, PH, Anaerobic digestion, Optimization, Leachate, Landfill, Daily cover

28

The treatment of mature landfill leachate by EF-Fere (also called Fered-Fenton) method was carried out in a continuous stirred tank reactor (CSTR) using Ti/RuO(2)-IrO(2)-SnO(2)-TiO(2) mesh anodes and Ti mesh cathodes. The effects of important parameters, including initial pH, inter-electrode gap, H(2)O(2) to Fe(2+) molar ratio, H(2)O(2) dosage and hydraulic retention time, on COD removal were investigated. The results showed that the complete mixing condition was fulfilled in the electrochemical reactor employed in this study and COD removal followed a modified pseudo-first order kinetic model. The COD removal efficiency increased with the decrease of H(2)O(2) to Fe(2+) molar ratio and hydraulic retention time. There existed an optimal inter-electrode gap or H(2)O(2) dosage so that the highest COD removal was achieved. Nearly the same COD removal was obtained at initial pH 3 and 5, but the steady state was quickly achieved at initial pH 3. The organic pollutants in the leachate were analyzed through a gas chromatography coupled with mass spectrometry (GC-MS) system. About 73 organics were detected in the leachate, and 52 of which were completely removed after EF-Fere process.

Concepts: Mass spectrometry, Chromatography, Analytical chemistry, Gas chromatography, Anaerobic digestion, Leachate, Landfill, Chemical reactor

27

Artificial sweeteners are gaining acceptance as tracers of human wastewater in the environment. The 3 artificial sweeteners analyzed in this study were detected in leachate or leachate-impacted groundwater at levels comparable to those of untreated wastewater at 14 of 15 municipal landfill sites tested, including several closed for >50 years. Saccharin was the dominant sweetener in old (pre-1990) landfills, while newer landfills were dominated by saccharin and acesulfame (introduced 2 decades ago; dominant in wastewater). Cyclamate was also detected, but less frequently. A case study at one site illustrates the use of artificial sweeteners to identify a landfill-impacted groundwater plume discharging to a stream. The study results suggest that artificial sweeteners can be useful tracers for current and legacy landfill contamination, with relative abundances of the sweeteners potentially providing diagnostic ability to distinguish different landfills or landfill cells, including crude age-dating, and to distinguish landfill and wastewater sources.

Concepts: Groundwater, Anaerobic digestion, Leachate, Landfill, Land reclamation, Aspartame, Sweeteners, Sucralose

27

The disposal of municipal waste in landfills may pose an environmental problem because the product of the decomposition of these residues generates large volumes of leachate, which may present high toxicity. The aim of this study was to assess the toxic and genotoxic effects of a sample of untreated leachate in fish (Leporinus obtusidens) and onions (Allium cepa). The leachate was collected in a landfill located in the region of Vale do Rio dos Sinos, southern Brazil. The fish were exposed to raw leachate, at concentrations of 0.5%, 1.0%, 5%, 10% and 20% for 6 days, while the bulbs of A. cepa were exposed to concentrations of 5%, 10%, 25%, 50% and 100% for 48 h. For fish, the concentrations of 5%, 10% and 20% were lethal, thus indicating high toxicity; however, sublethal concentrations (0.5% and 1.0%) showed no genotoxicity by micronucleus test when compared with the control group. In the bioassays involving onions, high toxicity was observed, with significant reduction of root growth and mitotic index in bulbs exposed to the 100% concentration of the leachate. An increase in the frequency of chromosome abnormalities in the A. cepa root cells in anaphase-telophase was observed in accordance with the increase in the concentration of leachate (5%, 10%, 25% and 50%), with values significantly greater than the control, at the highest concentration. The results showed that the leachate contains toxic and genotoxic substances, thus representing a major source of environmental pollution if not handled properly.

Concepts: Toxicology, Pollution, Garlic, Allium, Root, Leachate, Landfill, Onion

27

The design of passive biological filters has evolved and current design practices are predominantly based on flow (either horizontal or vertical) through porous media. To date, no method has been developed to accurately estimate the effective life expectancy of these types of treatment systems, nor have non-intrusive methods to determine the extent of substratum clogging been perfected. This research presents the results of tracer studies on various stages of two hybrid-passive landfill leachate treatment systems: an aerated pretreatment system followed by two different types of vertical-flow through porous media treatment systems. The tracer studies were used to assess changes in the active volumes of the different stages of the leachate treatment systems over a 9-month period. An analytical method, employing the governing equations for flow through porous media, was used to quantify the changes in saturated hydraulic conductivity in the treatment system cells. The results from the analytical method were combined with the results from the tracer study to further the understanding of the flow and mixing within the treatment system cells.

Concepts: Hydrology, Hydrogeology, Porosity, Leachate, Landfill, Hydraulic conductivity, Porous medium, Soil mechanics

24

Landfills are the final stage in the life cycle of many products containing per- and polyfluoroalkyl substances (PFASs) and their presence has been reported in landfill leachate. The concentrations of 70 PFASs in 95 samples of leachate were measured in a survey of U.S. landfills of varying climates and waste ages. National release of PFASs was estimated by coupling measured concentrations for the 19 PFASs where more than 50% of samples had quantifiable concentrations, with climate-specific estimates of annual leachate volumes. For 2013, the total volume of leachate generated in the U.S. was estimated to be 61.1 million m3, with 79% of this volume coming from landfills in wet climates (> 75 cm/yr precipitation) that contain 47% of U.S. solid waste. The mass of measured PFASs from U.S. landfill leachate to wastewater treatment plants was estimated to be between 563 and 638 kg for 2013. In the majority of landfill leachate samples, 5:3 fluorotelomer carboxylic acid (FTCA) was dominant and variations in concentrations with waste age affected total estimated mass. There were six PFASs that demonstrated significantly higher concentrations in leachate from younger waste compared to older waste, while no PFAS demonstrated significant variation with climate.

Concepts: Climate, Sewage treatment, Anaerobic digestion, Waste management, Recycling, Leachate, Landfill, Waste picker

1

Leachate treatment is a major issue in the context of landfill management, particularly in view of the consistent changes manifested over time in the quality and quantity of leachate produced, linked to both waste and landfill characteristics, which renders the procedure technically difficult and expensive. Leachate recirculation may afford a series of potential advantages, including improvement of leachate quality, enhancement of gas production, acceleration of biochemical processes, control of moisture content, as well as nutrients and microbe migration within the landfill. Recirculation of the products of leachate treatment, such as reverse osmosis (RO) concentrate, is a less common practice, with widespread controversy relating to its suitability, potential impacts on landfill management and future gaseous and leachable emissions. Scientific literature provides the results of only a few full-scale applications of concentrate recirculation. In some cases, an increase of COD and ammonium nitrogen in leachate was observed, coupled with an increase of salinity; which, additionally, might negatively affect performance of the RO plant itself. In other cases, not only did leachate production not increase significantly but the characteristics of leachate extracted from the well closest to the re-injection point also remained unchanged. This paper presents the results of lab-scale tests conducted in landfill simulation reactors, in which the effects of injection of municipal solid waste (MSW) landfill leachate RO concentrate were evaluated. Six reactors were managed with different weekly concentrate inputs, under both anaerobic and aerobic conditions, with the aim of investigating the short and long-term effects of this practice on landfill emissions. Lab-scale tests resulted in a more reliable identification of compound accumulation and kinetic changes than full-scale applications, further enhancing the development of a mass balance in which gaseous emissions and waste characteristics were also taken into consideration. Results showed that RO concentrate recirculation did not produce consistent changes in COD emissions and methane production. Simultaneously, ammonium ion showed a consistent increase in leachate (more than 25%) in anaerobic reactors, free ammonia gaseous emissions doubled with concentrate injection, while chloride resulted accumulated inside the reactor.

Concepts: Ammonia, Nitrogen, Ion, Anaerobic digestion, Waste management, Ammonium, Leachate, Landfill

1

Final leachates (leachate after storage or treatment processes) from 22 landfills in 12 states were analyzed for 190 pharmaceuticals and other contaminants of emerging concern (CECs), which were detected in every sample, with the number of CECs ranging from 1 to 58 (median = 22). In total, 101 different CECs were detected in leachate samples, including 43 prescription pharmaceuticals, 22 industrial chemicals, 15 household chemicals, 12 nonprescription pharmaceuticals, 5 steroid hormones, and 4 animal/plant sterols. The most frequently detected CECs were lidocaine (91%, local anesthetic), cotinine (86%, nicotine degradate), carisoprodol (82%, muscle relaxant), bisphenol A (77%, component of plastics and thermal paper), carbamazepine (77%, anticonvulsant), and N,N-diethyltoluamide (68%, insect repellent). Concentrations of CECs spanned 7 orders of magnitude, ranging from 2.0 ng/L (estrone) to 17 200 000 ng/L (bisphenol A). Concentrations of household and industrial chemicals were the greatest (∼1000-1 000 000 ng/L), followed by plant/animal sterols (∼1000-100 000 ng/L), nonprescription pharmaceuticals (∼100-10 000 ng/L), prescription pharmaceuticals (∼10-10 000 ng/L), and steroid hormones (∼10-100 ng/L). The CEC concentrations in leachate from active landfills were significantly greater than those in leachate from closed, unlined landfills (p = 0.05). The CEC concentrations were significantly greater (p < 0.01) in untreated leachate compared with treated leachate. The CEC concentrations were significantly greater in leachate disposed to wastewater treatment plants from modern lined landfills than in leachate released to groundwater from closed, unlined landfills (p = 0.04). The CEC concentrations were significantly greater (p = 0.06) in the fresh leachate (leachate before storage or treatment) reported in a previous study compared with the final leachate sampled for the present study. Environ Toxicol Chem 2015;9999:1-13. Published 2015 SETAC. This article is a US Government work and is in the public domain in the United States.

Concepts: Cholesterol, Bisphenol A, Sewage treatment, Steroid, Anaerobic digestion, Leachate, Landfill, Steroid hormone

0

The impact of contaminated leachate on groundwater from landfills is well known but specific effects on bacterial consortia are less well-studied. Bacterial communities in landfill and an urban site located in Suzhou, China were studied using Illumina high-throughput sequencing. A total number of 153944 good quality reads were produced and sequences assigned to 6388 operational taxonomic units (OTUs). Bacterial consortia consisted of up to 16 phyla including Proteobacteria (31.9 to 94.9% at landfill, 25.1 to 43.3% at urban sites), Actinobacteria (0 to 28.7% at landfill, 9.9 to 34.3% at urban sites), Bacteroidetes (1.4 to 25.6% at landfill, 5.6 to 7.8% at urban sites), Chloroflexi (0.4 to 26.5% at urban sites only) and unclassified bacteria. Pseudomonas was the dominant (67-93%) genus in landfill leachate. Arsenic concentrations in landfill raw leachate (RL) (1.11x103 µg/L) and fresh leachate (FL2) (1.78x103 µg/L), and mercury concentrations in RL (10.9 µg/L) and FL2 (7.37 µg/L) were higher than Chinese State Environmental Protection Administration (SEPA) standards for leachate in landfills. Shannon diversity index and Chao 1 richness estimate showed RL and FL2 lacked richness and diversity when compared with other samples. This is consistent with stresses imposed by elevated arsenic and mercury and has implications for ecological site remediation by bioremediation or natural attenuation.

Concepts: Bacteria, Soil, Groundwater, Anaerobic digestion, Diversity index, Shannon index, Leachate, Landfill

0

The appropriate treatment of sanitary landfill leachate is one of the greatest challenges nowadays due to the large volumes of solid waste generated. Thus, the aim of this study is to evaluate the performance of different routes involving the integration of advanced oxidation processes based on Fenton’s reagents (AOP-Fenton) and microfiltration (MF) and nanofiltration (NF) membrane processes for the treatment of landfill leachate. MF module configuration (submerged or sidestream) and MF and NF recovery rate were evaluated. The combination of AOP-Fenton, MF and NF proved to be an effective treatment for landfill leachate. High removal efficiencies of COD (94-96%) and color (96-99%) were obtained. The configuration named route 3, composed of MF of raw landfill leachate (MF1), POA-Fenton-MF2 of the MF1 concentrate and NF of both MF1 and MF2 permeates showed higher global water recovery and was responsible for lower waste generation. It was considered the best one in terms of environmental, technical and economical aspects.

Concepts: Pollution, Anaerobic digestion, Waste management, Recycling, Leachate, Landfill, Waste picker, Fly-tipping