SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Lake

171

The highest densities of lakes on Earth are in north temperate ecosystems, where increasing urbanization and associated chloride runoff can salinize freshwaters and threaten lake water quality and the many ecosystem services lakes provide. However, the extent to which lake salinity may be changing at broad spatial scales remains unknown, leading us to first identify spatial patterns and then investigate the drivers of these patterns. Significant decadal trends in lake salinization were identified using a dataset of long-term chloride concentrations from 371 North American lakes. Landscape and climate metrics calculated for each site demonstrated that impervious land cover was a strong predictor of chloride trends in Northeast and Midwest North American lakes. As little as 1% impervious land cover surrounding a lake increased the likelihood of long-term salinization. Considering that 27% of large lakes in the United States have >1% impervious land cover around their perimeters, the potential for steady and long-term salinization of these aquatic systems is high. This study predicts that many lakes will exceed the aquatic life threshold criterion for chronic chloride exposure (230 mg L(-1)), stipulated by the US Environmental Protection Agency (EPA), in the next 50 y if current trends continue.

Concepts: Water, Lake, United States, Climate, Water pollution, Ecosystem, United States Environmental Protection Agency, Great Lakes

170

Macrophyte decomposition is important for carbon and nutrient cycling in lake ecosystems. Currently, little is known about how this process responds to detritus quality and water nutrient conditions in eutrophic shallow lakes in which incomplete decomposition of detritus accelerates the lake terrestrialization process. In this study, we investigated the effects of detritus quality and water nutrient concentrations on macrophyte decomposition in Lake Baiyangdian, China, by analyzing the decomposition of three major aquatic plants at three sites with different pollution intensities (low, medium, and high pollution sites). Detritus quality refers to detritus nutrient contents as well as C:N, C:P, and N:P mass ratios in this study. Effects of detritus mixtures were tested by combining pairs of representative macrophytes at ratios of 75:25, 50:50 and 25:75 (mass basis). The results indicate that the influence of species types on decomposition was stronger than that of site conditions. Correlation analysis showed that mass losses at the end of the experimental period were significantly controlled by initial detritus chemistry, especially by the initial phosphorus (P) content, carbon to nitrogen (C:N), and carbon to phosphorus (C:P) mass ratios in the detritus. The decomposition processes were also influenced by water chemistry. The NO(3)-N and NH(4)-N concentrations in the lake water retarded detritus mass loss at the low and high pollution sites, respectively. Net P mineralization in detritus was observed at all sites and detritus P release at the high pollution site was slower than at the other two sites. Nonadditive effects of mixtures tended to be species specific due to the different nutrient contents in each species. Results suggest that the nonadditive effects varied significantly among different sites, indicating that interactions between the detritus quality in species mixtures and site water chemistry may be another driver controlling decomposition in eutrophic shallow lakes.

Concepts: Oxygen, Plant, Lake, Eutrophication, Hydrogen, Water pollution, Nitrogen, Lakes

157

Global climate change is causing a wastage of glaciers and threatening biodiversity in glacier-fed ecosystems. The high turbidity typically found in those ecosystems, which is caused by inorganic particles and result of the erosive activity of glaciers is a key environmental factor influencing temperature and light availability, as well as other factors in the water column. Once these lakes loose hydrological connectivity to glaciers and turn clear, the accompanying environmental changes could represent a potential bottleneck for the established local diversity with yet unknown functional consequences. Here, we study three lakes situated along a turbidity gradient as well as one clear unconnected lake and evaluate seasonal changes in their bacterial community composition and diversity. Further, we assess potential consequences for community functioning. Glacier runoff represented a diverse source community for the lakes and several taxa were able to colonize downstream turbid habitats, although they were not found in the clear lake. Operational taxonomic unit-based alpha diversity and phylogenetic diversity decreased along the turbidity gradient, but metabolic functional diversity was negatively related to turbidity. No evidence for multifunctional redundancy, which may allow communities to maintain functioning upon alterations in diversity, was found. Our study gives a first view on how glacier-fed lake bacterial communities are affected by the melting of glaciers and indicates that diversity and community composition significantly change when hydrological connectivity to the glacier is lost and lakes turn clear.The ISME Journal advance online publication, 15 January 2016; doi:10.1038/ismej.2015.245.

Concepts: Biodiversity, Lake, Climate, Water pollution, Antarctica, Surface runoff, Turbidity, Glacier mass balance

148

Meromictic lakes located in landlocked steppes of central Asia (~2500 km inland) have unique geophysiochemical characteristics compared to other meromictic lakes. To characterize their bacteria and elucidate relationships between those bacteria and surrounding environments, water samples were collected from three saline meromictic lakes (Lakes Shira, Shunet and Oigon) in the border between Siberia and the West Mongolia, near the center of Asia. Based on in-depth tag pyrosequencing, bacterial communities were highly variable and dissimilar among lakes and between oxic and anoxic layers within individual lakes. Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria and Firmicutes were the most abundant phyla, whereas three genera of purple sulfur bacteria (a novel genus, Thiocapsa and Halochromatium) were predominant bacterial components in the anoxic layer of Lake Shira (~20.6% of relative abundance), Lake Shunet (~27.1%) and Lake Oigon (~9.25%), respectively. However, few known green sulfur bacteria were detected. Notably, 3.94% of all sequencing reads were classified into 19 candidate divisions, which was especially high (23.12%) in the anoxic layer of Lake Shunet. Furthermore, several hydro-parameters (temperature, pH, dissolved oxygen, H2S and salinity) were associated (P< 0.05) with variations in dominant bacterial groups. In conclusion, based on highly variable bacterial composition in water layers or lakes, we inferred that the meromictic ecosystem was characterized by high diversity and heterogenous niches.

Concepts: Photosynthesis, Oxygen, Bacteria, Microbiology, Lake, Hydrogen sulfide, Central Asia, Anoxic event

109

Supraglacial lakes on the Greenland Ice Sheet are expanding inland, but the impact on ice flow is equivocal because interior surface conditions may preclude the transfer of surface water to the bed. Here we use a well-constrained 3D model to demonstrate that supraglacial lakes in Greenland drain when tensile-stress perturbations propagate fractures in areas where fractures are normally absent or closed. These melt-induced perturbations escalate when lakes as far as 80 km apart form expansive networks and drain in rapid succession. The result is a tensile shock that establishes new surface-to-bed hydraulic pathways in areas where crevasses transiently open. We show evidence for open crevasses 135 km inland from the ice margin, which is much farther inland than previously considered possible. We hypothesise that inland expansion of lakes will deliver water and heat to isolated regions of the ice sheet’s interior where the impact on ice flow is potentially large.

Concepts: Water, Lake, Ice sheet, Greenland ice sheet, Glacier, Fracture mechanics, Drainage, Glaciology

100

Subglacial lakes are unique environments that, despite the extreme dark and cold conditions, have been shown to host microbial life. Many subglacial lakes have been discovered beneath the ice sheets of Antarctica and Greenland, but no spatially isolated water body has been documented as hypersaline. We use radio-echo sounding measurements to identify two subglacial lakes situated in bedrock troughs near the ice divide of Devon Ice Cap, Canadian Arctic. Modeled basal ice temperatures in the lake area are no higher than -10.5°C, suggesting that these lakes consist of hypersaline water. This implication of hypersalinity is in agreement with the surrounding geology, which indicates that the subglacial lakes are situated within an evaporite-rich sediment unit containing a bedded salt sequence, which likely act as the solute source for the brine. Our results reveal the first evidence for subglacial lakes in the Canadian Arctic and the first hypersaline subglacial lakes reported to date. We conclude that these previously unknown hypersaline subglacial lakes may represent significant and largely isolated microbial habitats, and are compelling analogs for potential ice-covered brine lakes and lenses on planetary bodies across the solar system.

Concepts: Water, Lake, Glacier, Solar System, Antarctica, Glaciology, Subglacial lake, Ice cap

91

Using a whole-watershed approach and a combination of historical, contemporary, modeled and paleolimnological datasets, we show that the High Arctic’s largest lake by volume (Lake Hazen) has succumbed to climate warming with only a ~1 °C relative increase in summer air temperatures. This warming deepened the soil active layer and triggered large mass losses from the watershed’s glaciers, resulting in a ~10 times increase in delivery of glacial meltwaters, sediment, organic carbon and legacy contaminants to Lake Hazen, a >70% decrease in lake water residence time, and near certainty of summer ice-free conditions. Concomitantly, the community assemblage of diatom primary producers in the lake shifted dramatically with declining ice cover, from shoreline benthic to open-water planktonic species, and the physiological condition of the only fish species in the lake, Arctic Char, declined significantly. Collectively, these changes place Lake Hazen in a biogeochemical, limnological and ecological regime unprecedented within the past ~300 years.

Concepts: Biology, Water, Lake, Ice, Soil, Plankton, Arctic char, Lake Hazen

74

Recent shifts in the ecological condition of Walden Pond, MA, are of potentially wide interest due to the lake’s importance as a cultural, historical, and recreational resource in addition to its scientific value as an indicator of local and global environmental change. Algal microfossils in six sediment cores document changes in hydroclimate and trophic status of the lake during the last 1800 years and extend two previous sediment core records of shorter length. Low percentages of planktonic diatoms in the longest cores (WAL-3, WAL-15) indicate shallowing and/or greater water clarity associated with a relatively arid interval during the Medieval Climate Anomaly, ca. A.D. 1150-1300, Cultural eutrophication of the lake since the A.D. 1920s caused diatoms in the genera Asterionella and Synedra to increase in relative abundance at the expense of Cyclotella, Discostella, and the chrysophyte alga Mallomonas allorgei. Percentages of Asterionella and Synedra have remained fairly stable since A.D. 2000 when a previous sediment core study was conducted, but scaled chrysophytes have become more numerous. These findings suggest that, although mitigation efforts have curtailed anthropogenic nutrient inputs to Walden Pond, the lake has not returned to the pre-impact condition described by Henry David Thoreau and may become increasingly vulnerable to further changes in water quality in a warmer and possibly wetter future.

Concepts: Algae, Lake, Eutrophication, Water pollution, Henry David Thoreau, Concord, Massachusetts, Walden, Walden Pond

58

The discovery on Mars of recurring slope lineae (RSL), thought to represent seasonal brines, has sparked interest in analogous environments on Earth. We report on new studies of Don Juan Pond (DJP), which exists at the upper limit of ephemeral water in the McMurdo Dry Valleys (MDV) of Antarctica, and is adjacent to several steep-sloped water tracks, the closest analog for RSL. The source of DJP has been interpreted to be deep groundwater. We present time-lapse data and meteorological measurements that confirm deliquescence within the DJP watershed and show that this, together with small amounts of meltwater, are capable of generating brines that control summertime water levels. Groundwater input was not observed. In addition to providing an analog for RSL formation, CaCl(2) brines and chloride deposits in basins may provide clues to the origin of ancient chloride deposits on Mars dating from the transition period from “warm/wet” to “cold/dry” climates.

Concepts: Water, Lake, Antarctica, McMurdo Dry Valleys, McMurdo Sound, Dead Sea, Don Juan Pond, Lake Assal

53

The absence of well-executed environmental monitoring in the Athabasca oil sands (Alberta, Canada) has necessitated the use of indirect approaches to determine background conditions of freshwater ecosystems before development of one of the Earth’s largest energy deposits. Here, we use highly resolved lake sediment records to provide ecological context to ∼50 y of oil sands development and other environmental changes affecting lake ecosystems in the region. We show that polycyclic aromatic hydrocarbons (PAHs) within lake sediments, particularly C1-C4-alkylated PAHs, increased significantly after development of the bitumen resource began, followed by significant increases in dibenzothiophenes. Total PAH fluxes in the modern sediments of our six study lakes, including one site ∼90 km northwest of the major development area, are now ∼2.5-23 times greater than ∼1960 levels. PAH ratios indicate temporal shifts from primarily wood combustion to petrogenic sources that coincide with greater oil sands development. Canadian interim sediment quality guidelines for PAHs have been exceeded since the mid-1980s at the most impacted site. A paleoecological assessment of Daphnia shows that this sentinel zooplankter has not yet been negatively impacted by decades of high atmospheric PAH deposition. Rather, coincident with increases in PAHs, climate-induced shifts in aquatic primary production related to warmer and drier conditions are the primary environmental drivers producing marked daphniid shifts after ∼1960 to 1970. Because of the striking increase in PAHs, elevated primary production, and zooplankton changes, these oil sands lake ecosystems have entered new ecological states completely distinct from those of previous centuries.

Concepts: Lake, Sediment, Petroleum, Polycyclic aromatic hydrocarbon, Alberta, Canada, Aromaticity, Oil sands