SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Kinesin

169

In response to toxic stimuli, BCL2L11 (also known as BIM), a BH3-only protein, is released from its interaction with dynein light chain 1 (DYNLL1 also known as LC8) and can induce apoptosis by inactivating anti-apoptotic BCL2 proteins and by activating BAX-BAK1. Recently, we discovered that BCL2L11 interacts with BECN1 (Beclin 1), and that this interaction is facilitated by DYNLL1. BCL2L11 recruits BECN1 to microtubules by bridging BECN1 and DYNLL1, thereby inhibiting autophagy. In starvation conditions, BCL2L11 is phosphorylated by MAPK8/JNK and this phosphorylation abolishes the BCL2L11-DYNLL1 interaction, allowing dissociation of BCL2L11 and BECN1, thereby ameliorating autophagy inhibition. This finding demonstrates a novel function of BIM beyond its roles in apoptosis, highlighting the crosstalk between autophagy and apoptosis, and suggests that BCL2L11’s dual effects in inhibiting autophagy and promoting apoptosis may have important roles in disease pathogenesis.

Concepts: Signal transduction, Apoptosis, Cell signaling, Proteomics, Kinesin, Bcl-2, DYNLL1, BCL2L11

152

Developing abilities to assemble nanoscale structures is a major scientific and engineering challenge. We report a technique which allows precise positioning and manipulation of individual rigid filaments, enabling construction of custom-designed 3D filament networks. This approach uses holographic optical trapping (HOT) for nano-positioning and microtubules (MTs) as network building blocks. MTs are desirable engineering components due to their high aspect ratio, rigidity, and their ability to serve as substrate for directed nano-transport, reflecting their roles in the eukaryotic cytoskeleton. The 3D architecture of MT cytoskeleton is a significant component of its function, however experimental tools to study the roles of this geometric complexity in a controlled environment have been lacking. We demonstrate the broad capabilities of our system by building a self-supporting 3D MT-based nanostructure and by conducting a MT-based transport experiment on a dynamically adjustable 3D MT intersection. Our methodology not only will advance studies of cytoskeletal networks (and associated processes such as MT-based transport) but will also likely find use in engineering nanostructures and devices.

Concepts: Eukaryote, Flagellum, Cytoskeleton, Mitosis, Kinesin, Tubulin, Microtubule, Construction

27

Anaphase central spindle formation is controlled by the microtubule-stabilizing factor PRC1 and the kinesin KIF4A. We show that an MKlp2-dependent pool of Aurora B at the central spindle, rather than global Aurora B activity, regulates KIF4A accumulation at the central spindle. KIF4A phosphorylation by Aurora B stimulates the maximal microtubule-dependent ATPase activity of KIF4A and promotes its interaction with PRC1. In the presence of phosphorylated KIF4A, microtubules grew more slowly and showed long pauses in growth, resulting in the generation of shorter PRC1-stabilized microtubule overlaps in vitro. Cells expressing only mutant forms of KIF4A lacking the Aurora B phosphorylation site overextended the anaphase central spindle, demonstrating that this regulation is crucial for microtubule length control in vivo. Aurora B therefore ensures that suppression of microtubule dynamic instability by KIF4A is restricted to a specific subset of microtubules and thereby contributes to central spindle size control in anaphase.

Concepts: In vivo, Phosphorylation, In vitro, Cytoskeleton, Mitosis, Dynein, Kinesin, Microtubule

26

Growing microtubule end regions recruit a variety of proteins collectively termed +TIPs, which confer local functions to the microtubule cytoskeleton. +TIPs form dynamic interaction networks whose behaviour depends on a number of potentially competitive and hierarchical interaction modes. The rules that determine which of the various +TIPs are recruited to the limited number of available binding sites at microtubule ends remain poorly understood. Here we examined how the human dynein complex, the main minus-end-directed motor and an important +TIP (refs , , ), is targeted to growing microtubule ends in the presence of different +TIP competitors. Using a total internal reflection fluorescence microscopy-based reconstitution assay, we found that a hierarchical recruitment mode targets the large dynactin subunit p150Glued to growing microtubule ends via EB1 and CLIP-170 in the presence of competing SxIP-motif-containing peptides. We further show that the human dynein complex is targeted to growing microtubule ends through an interaction of the tail domain of dynein with p150Glued. Our results highlight how the connectivity and hierarchy within dynamic +TIP networks are orchestrated.

Concepts: Protein, Human, Eukaryote, Total internal reflection fluorescence microscope, Dynein, Kinesin, Reflection, Microtubule

22

Following envelope mediated fusion, the HIV-1 core is released into the cytoplasm of the target cell and undergoes a series of trafficking and replicative steps that result in the nuclear import of the viral genome, which ultimately leads to the integration of the proviral DNA into the host cell genome. Previous studies have found that disruption of microtubules, or depletion of dynein or kinesin motors, perturb the normal uncoating and trafficking of the viral genome. Here, we show that the Kinesin-1 motor, KIF5B, induces a relocalization of the nuclear pore component Nup358 into the cytoplasm during HIV-1 infection. This relocalization of NUP358 is dependent on HIV-1 capsid, and NUP358 directly associates with viral cores following cytoplasmic translocation. This interaction between NUP358 and the HIV-1 core is dependent on multiple capsid binding surfaces, as this association is not observed following infection with capsid mutants in which a conserved hydrophobic binding pocket (N74D) or the cyclophilin A binding loop (P90A) is disrupted. KIF5B knockdown also prevents the nuclear entry and infection by HIV-1, but does not exert a similar effect on the N74D or P90A capsid mutants which do not rely on Nup358 for nuclear import. Finally, we observe that the relocalization of Nup358 in response to CA is dependent on cleavage protein and polyadenylation factor 6 (CPSF6), but independent of cyclophilin A. Collectively, these observations identify a previously unappreciated role for KIF5B in mediating the Nup358 dependent nuclear import of the viral genome during infection.

Concepts: HIV, DNA, Protein, Cell nucleus, Cell, Virus, Cytoskeleton, Kinesin

20

Neurons and other cells require intracellular transport of essential components for viability and function. Previous work has shown that while net amyloid precursor protein (APP) transport is generally anterograde, individual vesicles containing amyloid precursor protein (APP) move bi-directionally. This discrepancy highlights our poor understanding of the in vivo regulation of APP vesicle transport. Here we show that reduction of presenilin (PS) or suppression of gamma-secretase activity substantially increases anterograde and retrograde velocities for APP vesicles. Strikingly, presenilin deficiency has no effect on an unrelated cargo vesicle class containing synaptotagmin, which is powered by a different kinesin motor. Increased velocities caused by presenilin or gamma-secretase reduction require functional kinesin-1 and dynein motors. Together, our findings suggest that a normal function of PS is to repress kinesin-1 and dynein motor activity during axonal transport of APP vesicles. Furthermore, our data suggests that axonal transport defects induced by loss of PS-mediated regulatory effects on APP vesicle motility could be a major cause of neuronal and synaptic defects observed in Alzheimer’s Disease (AD) pathogenesis. Thus perturbations of APP/PS transport could contribute to early neuropathology observed in AD, and highlight a potential novel therapeutic pathway for early intervention, prior to neuronal loss and clinical manifestation of disease.

Concepts: Alzheimer's disease, Nervous system, Neuron, Action potential, Axon, Kinesin, Amyloid precursor protein, Presenilin

19

In nature, swarming behavior has evolved repeatedly among motile organisms because it confers a variety of beneficial emergent properties. These include improved information gathering, protection from predators, and resource utilization. Some organisms, e.g., locusts, switch between solitary and swarm behavior in response to external stimuli. Aspects of swarming behavior have been demonstrated for motile supramolecular systems composed of biomolecular motors and cytoskeletal filaments, where cross-linkers induce large scale organization. The capabilities of such supramolecular systems may be further extended if the swarming behavior can be programmed and controlled. Here, we demonstrate that the swarming of DNA-functionalized microtubules (MTs) propelled by surface-adhered kinesin motors can be programmed and reversibly regulated by DNA signals. Emergent swarm behavior, such as translational and circular motion, can be selected by tuning the MT stiffness. Photoresponsive DNA containing azobenzene groups enables switching between solitary and swarm behavior in response to stimulation with visible or ultraviolet light.

Concepts: DNA, Ultraviolet, Organism, Eukaryote, Cytoskeleton, Kinesin, Microtubule, Swarm

19

Diverse cellular processes are driven by motor proteins that are recruited to and generate force on lipid membranes. Surprisingly little is known about how membranes control the force from motors and how this may impact specific cellular functions. Here, we show that dynein motors physically cluster into microdomains on the membrane of a phagosome as it matures inside cells. Such geometrical reorganization allows many dyneins within a cluster to generate cooperative force on a single microtubule. This results in rapid directed transport of the phagosome toward microtubule minus ends, likely promoting phagolysosome fusion and pathogen degradation. We show that lipophosphoglycan, the major molecule implicated in immune evasion of Leishmania donovani, inhibits phagosome motion by disrupting the clustering and therefore the cooperative force generation of dynein. These findings appear relevant to several pathogens that prevent phagosome-lysosome fusion by targeting lipid microdomains on phagosomes.

Concepts: Immune system, Protein, Eukaryote, Phagocytosis, Phagosome, Phagolysosome, Mycobacterium tuberculosis, Kinesin

17

Many cellular processes are driven by cytoskeletal assemblies. It remains unclear how cytoskeletal filaments and motor proteins organize into cellular scale structures and how molecular properties of cytoskeletal components affect the large scale behaviors of these systems. Here we investigate the self-organization of stabilized microtubules in Xenopus oocyte extracts and find that they can form macroscopic networks that spontaneously contract. We propose that these contractions are driven by the clustering of microtubule minus ends by dynein. Based on this idea, we construct an active fluid theory of network contractions which predicts a dependence of the timescale of contraction on initial network geometry, a development of density inhomogeneities during contraction, a constant final network density, and a strong influence of dynein inhibition on the rate of contraction, all in quantitative agreement with experiments. These results demonstrate that the motor-driven clustering of filament ends is a generic mechanism leading to contraction.

Concepts: Eukaryote, Cytoskeleton, Mitosis, Dynein, Kinesin, Tubulin, Microtubule, Contract

16

In animals and fungi, cytoplasmic dynein is a processive minus-end-directed motor that plays dominant roles in various intracellular processes. In contrast, land plants lack cytoplasmic dynein but contain many minus-end-directed kinesin-14s. No plant kinesin-14 is known to produce processive motility as a homodimer. OsKCH2 is a plant-specific kinesin-14 with an N-terminal actin-binding domain and a central motor domain flanked by two predicted coiled-coils (CC1 and CC2). Here, we show that OsKCH2 specifically decorates preprophase band microtubules in vivo and transports actin filaments along microtubules in vitro. Importantly, OsKCH2 exhibits processive minus-end-directed motility on single microtubules as individual homodimers. We find that CC1, but not CC2, forms the coiled-coil to enable OsKCH2 dimerization. Instead, our results reveal that removing CC2 renders OsKCH2 a nonprocessive motor. Collectively, these results show that land plants have evolved unconventional kinesin-14 homodimers with inherent minus-end-directed processivity that may function to compensate for the loss of cytoplasmic dynein.

Concepts: Eukaryote, Plant, Animal, Cytoskeleton, Mitosis, Dynein, Kinesin, Microtubule