SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Kinase

175

Ki-67 and RepoMan have key roles during mitotic exit. Previously, we showed that Ki-67 organizes the mitotic chromosome periphery and recruits protein phosphatase 1 (PP1) to chromatin at anaphase onset, in a similar manner as RepoMan (Booth et al., 2014). Here we show how Ki-67 and RepoMan form mitotic exit phosphatases by recruiting PP1, how they distinguish between distinct PP1 isoforms and how the assembly of these two holoenzymes are dynamically regulated by Aurora B kinase during mitosis. Unexpectedly, our data also reveal that Ki-67 and RepoMan bind PP1 using an identical, yet novel mechanism, interacting with a PP1 pocket that is engaged only by these two PP1 regulators. These findings not only show how two distinct mitotic exit phosphatases are recruited to their substrates, but also provide immediate opportunities for the design of novel cancer therapeutics that selectively target the Ki-67:PP1 and RepoMan:PP1 holoenzymes.

Concepts: Cell nucleus, Enzyme, Chromosome, Cell cycle, Kinase, Mitosis, Chromatin, Phosphatase

159

Phosphatase and tensin homolog (PTEN) loss or mutation consistently activates the phosphatidylinositol 3-kinase (PI3-K)/Akt signaling pathway, which contributes to the progression and invasiveness of prostate cancer. Furthermore, the PTEN/PI3-K/Akt and Ras/MAPK pathways cooperate to promote the epithelial-mesenchymal transition (EMT) and metastasis initiated from prostate stem/progenitor cells. For these reasons, the PTEN/PI3-K/Akt pathway is considered as an attractive target for both chemoprevention and chemotherapy. Herein we report that eupafolin, a natural compound found in common sage, inhibited proliferation of prostate cancer cells. Protein content analysis indicated that phosphorylation of Akt and its downstream kinases was inhibited by eupafolin treatment. Pull-down assay and in vitro kinase assay results indicated that eupafolin could bind with PI3-K and attenuate its kinase activity. Eupafolin also exhibited tumor suppressive effects in vivo in an athymic nude mouse model. Overall, these results suggested that eupafolin exerts antitumor effects by targeting PI3-K. © 2014 Wiley Periodicals, Inc.

Concepts: Cancer, Metastasis, Oncology, Signal transduction, Enzyme, Prostate cancer, Kinase, AKT

64

DIM (3,3'-diindolylmethane), a small molecule compound, is a proposed cancer preventive agent that can be safely administered to humans in repeated doses. We report that administration of DIM in a multidose schedule protected rodents against lethal doses of total body irradiation up to 13 Gy, whether DIM dosing was initiated before or up to 24 h after radiation. Physiologic submicromolar concentrations of DIM protected cultured cells against radiation by a unique mechanism: DIM caused rapid activation of ataxia-telangiectasia mutated (ATM), a nuclear kinase that regulates responses to DNA damage (DDR) and oxidative stress. Subsequently, multiple ATM substrates were phosphorylated, suggesting that DIM induces an ATM-dependent DDR-like response, and DIM enhanced radiation-induced ATM signaling and NF-κB activation. DIM also caused activation of ATM in rodent tissues. Activation of ATM by DIM may be due, in part, to inhibition of protein phosphatase 2A, an upstream regulator of ATM. In contrast, DIM did not protect human breast cancer xenograft tumors against radiation under the conditions tested. In tumors, ATM was constitutively phosphorylated and was not further stimulated by radiation and/or DIM. Our findings suggest that DIM is a potent radioprotector and mitigator that functions by stimulating an ATM-driven DDR-like response and NF-κB survival signaling.

Concepts: DNA, Cancer, Ionizing radiation, Mutation, Adenosine triphosphate, Enzyme, DNA repair, Kinase

29

Mutations in the human kinase PINK1 (hPINK1) are associated with autosomal recessive early-onset Parkinson’s disease (PD). hPINK1 activates Parkin E3 ligase activity, involving phosphorylation of ubiquitin and the Parkin ubiquitin-like (Ubl) domain via as yet poorly understood mechanisms. hPINK1 is unusual amongst kinases due to the presence of three loop insertions of unknown function. We report the structure of Tribolium castaneum PINK1 (TcPINK1), revealing several unique extensions to the canonical protein kinase fold. The third insertion, together with autophosphorylation at residue Ser205, contributes to formation of a bowl-shaped binding site for ubiquitin. We also define a novel structural element within the second insertion that is held together by a distal loop that is critical for TcPINK1 activity. The structure of TcPINK1 explains how PD-linked mutations that lie within the kinase domain result in hPINK1 loss-of-function and provides a platform for the exploration of small molecule modulators of hPINK1.

Concepts: DNA, Protein, Signal transduction, Adenosine triphosphate, Enzyme, Kinase, Protein kinase, Parkinson's disease

29

Protein kinases are highly tractable targets for drug discovery. However, the biological function and therapeutic potential of the majority of the 500+ human protein kinases remains unknown. We have developed physical and virtual collections of small molecule inhibitors, which we call chemogenomic sets, that are designed to inhibit the catalytic function of almost half the human protein kinases. In this manuscript we share our progress towards generation of a comprehensive kinase chemogenomic set (KCGS), release kinome profiling data of a large inhibitor set (Published Kinase Inhibitor Set 2 (PKIS2)), and outline a process through which the community can openly collaborate to create a KCGS that probes the full complement of human protein kinases.

Concepts: DNA, Signal transduction, Enzyme, Kinase, Protein kinase, Enzyme inhibitor, Inhibitor, Xanthine oxidase inhibitor

28

Mutations in leucine-rich repeat kinase 2 (LRRK2) are a major cause of familial Parkinsonism, and the G2019S mutation of LRRK2 is one of the most prevalent mutations. The deregulation of autophagic processes in nerve cells is thought to be a possible cause of Parkinson’s disease (PD). In this study, we observed that G2019S mutant fibroblasts exhibited higher autophagic activity levels than control fibroblasts. Elevated levels of autophagic activity can trigger cell death, and in our study, G2019S mutant cells exhibited increased apoptosis hallmarks compared to control cells. LRRK2 is able to induce the phosphorylation of MAPK/ERK kinases (MEK). The use of 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene (U0126), a highly selective inhibitor of MEK1/2, reduced the enhanced autophagy and sensibility observed in G2019S LRRK2 mutation cells. These data suggest that the G2019S mutation induces autophagy via MEK/ERK pathway and that the inhibition of this exacerbated autophagy reduces the sensitivity observed in G2019S mutant cells.

Concepts: Immune system, DNA, Signal transduction, Adenosine triphosphate, Enzyme, Kinase, Parkinson's disease, LRRK2

28

Quercetin, a naturally occurring flavonoid, has been reported to possess numerous biological activities including activation of adenosine-5'-monophosphate-activated protein kinase (AMPK). We investigated the effects of quercetin intake during lactation on the AMPK activation in the livers of adult offspring programmed by maternal protein restriction during gestation. Pregnant Wistar rats were fed control and low-protein diets during gestation. Following delivery, each dam received a control or 0.2% quercetin-containing control diet during lactation as follows: control on control (CC), control on restricted (LPC) and 0.2% quercetin-containing control on restricted (LPQ). At weaning (week 3), some of the pups from each dam were killed, and the remaining pups (CC, n=8; LPC, n=10; LPQ, n=13) continued to receive a standard laboratory diet and were killed at week 23. Blood chemistry and phosphorylation levels of AMPKα, acetyl-CoA carboxylase (ACC), endothelial nitric oxide synthase (eNOS) and mammalian target of rapamycin (mTOR) in the livers of male offspring were examined. At week 3, the level of phosphorylated AMPK protein in LPQ increased about 1.5- and 2.1-fold compared with LPC and CC, respectively, and the level in LPQ at week 23 increased about 1.9- and 2.9-fold, respectively. A significant increase in phosphorylated ACC and eNOS levels was found in LPQ. There was no significant difference among the three groups in the level of phosphorylated mTOR protein. In conclusion, quercetin intake during lactation up-regulates AMPK activation in the adult offspring of protein-restricted dams and modulates the AMPK pathway in the liver.

Concepts: Reproduction, Signal transduction, Adenosine triphosphate, Kinase, Nitric oxide, Nitric oxide synthase, AMP-activated protein kinase, Acetyl-CoA carboxylase

28

A library of 484 imidazole-based candidate inhibitors was tested against a panel of 24 protein kinases. The resulting activity data have been systematically analyzed to search for compounds that effectively differentiate between kinases. Six imidazole derivatives with high kinase differentiation potential were identified. Nearest neighbor analysis revealed the presence of close analogs with varying differentiation potential. Small structural modifications of active compounds were found to shift their inhibitory profiles towards kinases with different functions.

Concepts: DNA, Signal transduction, Adenosine triphosphate, Enzyme, Kinase, Protein kinase, Enzyme inhibitor, Derivative

28

The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) plays an essential role in double-strand break repair by initially recognizing and binding to DNA breaks. Here, we show that DNA-PKcs interacts with the regulatory γ1 subunit of AMP-activated protein kinase (AMPK), a heterotrimeric enzyme that has been proposed to function as a “fuel gauge” to monitor changes in the energy status of cells and is controlled by the upstream kinases LKB1 and Ca(2+)/calmodulin-dependent kinase kinase (CaMKK). In co-immunoprecipitation analyses, DNA-PKcs and AMPKγ1 interacted physically in DNA-PKcs-proficient M059K cells but not in DNA-PKcs-deficient M059J cells. Glucose deprivation-stimulated phosphorylation of AMPKα on Thr172 and of acetyl-CoA carboxylase (ACC), a downstream target of AMPK, is substantially reduced in M059J cells compared with M059K cells. The inhibition or down-regulation of DNA-PKcs by the DNA-PKcs inhibitors, wortmannin and Nu7441, or by DNA-PKcs siRNA caused a marked reduction in AMPK phosphorylation, AMPK activity, and ACC phosphorylation in response to glucose depletion in M059K, WI38, and IMR90 cells. In addition, DNA-DNA-PKcs(-/-) mouse embryonic fibroblasts (MEFs) exhibited decreased AMPK activation in response to glucose-free conditions. Furthermore, the knockdown of DNA-PKcs led to the suppression of AMPK (Thr172) phosphorylation in LKB1-deficient HeLa cells under glucose deprivation. Taken together, these findings support the positive regulation of AMPK activation by DNA-PKcs under glucose-deprived conditions in mammalian cells.

Concepts: DNA, Protein, Signal transduction, Adenosine triphosphate, Enzyme, Kinase, Enzyme inhibitor, Acetyl-CoA carboxylase

28

An Abl label: The design of sensors to monitor the activity state of specific protein kinases is challenging due to the complexity of eukaryotic kinomes. Here we describe a peptide-based photoaffinity probe that specifically labels the active conformation of the Abl tyrosine kinase.

Concepts: Amino acid, Signal transduction, Adenosine triphosphate, Enzyme, Kinase, Protein kinase, Phosphorylation, Label