Discover the most talked about and latest scientific content & concepts.

Concept: Kilometre


Feral cats are normally territorial in Australia’s tropical savannahs, and hunt intensively with home-ranges only two to three kilometres across. Here we report that they also undertake expeditions of up to 12.5 km from their home ranges to hunt for short periods over recently burned areas. Cats are especially likely to travel to areas burned at high intensity, probably in response to vulnerability of prey soon after such fires. The movements of journeying cats are highly directed to specific destinations. We argue that the effect of this behaviour is to increase the aggregate impact of cats on vulnerable prey. This has profound implications for conservation, considering the ubiquity of feral cats and global trends of intensified fire regimes.

Concepts: Predation, Kilometre, Behavior, Human behavior, Hunting, Sound intensity, Intensity, Feral cat


Roads fragment landscapes and trigger human colonization and degradation of ecosystems, to the detriment of biodiversity and ecosystem functions. The planet’s remaining large and ecologically important tracts of roadless areas sustain key refugia for biodiversity and provide globally relevant ecosystem services. Applying a 1-kilometer buffer to all roads, we present a global map of roadless areas and an assessment of their status, quality, and extent of coverage by protected areas. About 80% of Earth’s terrestrial surface remains roadless, but this area is fragmented into ~600,000 patches, more than half of which are <1 square kilometer and only 7% of which are larger than 100 square kilometers. Global protection of ecologically valuable roadless areas is inadequate. International recognition and protection of roadless areas is urgently needed to halt their continued loss.

Concepts: Biodiversity, Conservation biology, Ecology, Natural environment, Kilometre, Ecosystem, Sustainability, Square kilometre


While several thousand square kilometers of land area have been subject to surface mining in the Central Appalachians, no reliable estimate exists for how much coal is produced per unit landscape disturbance. We provide this estimate using regional satellite-derived mine delineations and historical county-level coal production data for the period 1985-2005, and further relate the aerial extent of mining disturbance to stream impairment and loss of ecosystem carbon sequestration potential. To meet current US coal demands, an area the size of Washington DC would need to be mined every 81 days. A one-year supply of coal would result in ∼2,300 km of stream impairment and a loss of ecosystem carbon sequestration capacity comparable to the global warming potential of >33,000 US homes. For the first time, the environmental impacts of surface coal mining can be directly scaled with coal production rates.

Concepts: Carbon dioxide, Kilometre, Methane, Coal, Global warming, Coal mining, Anthracite, Conversion of units


Emissions of CO2 from road vehicles were 1.57 billion metric tons in 2012, accounting for 28% of US fossil fuel CO2 emissions, but the spatial distributions of these emissions are highly uncertain. We develop a new emissions inventory, the Database of Road Transportation Emissions (DARTE), which estimates CO2 emitted by US road transport at a resolution of 1 km annually for 1980-2012. DARTE reveals that urban areas are responsible for 80% of on-road emissions growth since 1980 and for 63% of total 2012 emissions. We observe nonlinearities between CO2 emissions and population density at broad spatial/temporal scales, with total on-road CO2 increasing nonlinearly with population density, rapidly up to 1,650 persons per square kilometer and slowly thereafter. Per capita emissions decline as density rises, but at markedly varying rates depending on existing densities. We make use of DARTE’s bottom-up construction to highlight the biases associated with the common practice of using population as a linear proxy for disaggregating national- or state-scale emissions. Comparing DARTE with existing downscaled inventories, we find biases of 100% or more in the spatial distribution of urban and rural emissions, largely driven by mismatches between inventory downscaling proxies and the actual spatial patterns of vehicle activity at urban scales. Given cities' dual importance as sources of CO2 and an emerging nexus of climate mitigation initiatives, high-resolution estimates such as DARTE are critical both for accurately quantifying surface carbon fluxes and for verifying the effectiveness of emissions mitigation efforts at urban scales.

Concepts: Carbon dioxide, Kilometre, City, Population density, Transport, Fossil fuel, Traffic, Global warming


The effects of an enforced fast-start on long distance performance are controversial and seem to depend on the athlete’s capacity to delay and tolerate metabolic disruption. The aim of this study was to investigate the effects of an enforced fast-start on 10-km running performance and the influence of the some physiological and performance variables on the ability to tolerate an enforced fast-start during the running. Fifteen moderately-trained runners performed two 10-km time-trials: free-pacing (FP-TT) and fast-start (FS-TT). During FS-TT, speed during the first kilometer was 6% higher than in FP-TT. Maximal oxygen uptake (VO2max), peak velocity (PV), velocity associated with VO2max (vVO2max), ventilatory threshold, and running economy (RE) at 10 km·h-1, 12 km·h-1 and FP-TT average velocity (AV-10 km) were individually determined. There were no differences between FP-TT and FS-TT performance (45:01 ± 4:08 vs 45:11 ± 4:46 min:s, respectively, p=0.4). We observed that eight participants improved (+2.2%) their performance and were classified as positive responders (PR) and seven decreased (-3.3%) performance and were classified as negative responders (NR). Running speed was significantly higher for PR between 6 km and 9.2 km (p<0.05) during FS-TT. In addition, PR presented higher PV (p=0.02) and vVO2max (p= 0.01) than NR, suggesting the PV and vVO2max might influence the ability to tolerate a fast-start strategy. In conclusion, there was an individual response to the enforced fast-start strategy during 10-km running, and those who improved performance also presented higher vVO2max and PV, suggesting a possible association between these variables and response to the strategy adopted.

Concepts: Kilometre, Performance, Velocity, Exercise physiology, Running, Speed, VO2 max, Running in Ancient Greece


The influence of fission-fusion dynamics, i.e., temporal variation in group size and composition, on social complexity has been studied in large-brained mammals that rely on social bonds. Little is known about birds, even though some species like ravens have recently received attention for their socio-cognitive skills and use of social bonds. While raven breeders defend territories year-round, non-breeders roam through large areas and form groups at food sources or night roosts. We here examined the fission-fusion patterns of non-breeding ravens over years, investigating whether birds meet repeatedly either at the same or at different locations. We combined four large datasets: presence-absence observations from two study sites (Austria, Italy) and GPS-tracking of ravens across two study areas (Austria, France). As expected, we found a highly dynamic system in which individuals with long phases of temporary settlement had a high probability of meeting others. Although GPS-tagged ravens spread out over thousands of square kilometres, we found repeated associations between almost half of the possible combinations at different locations. Such a system makes repeated interactions between individuals at different sites possible and likely. High fission-fusion dynamics may thus not hinder but shape the social complexity of ravens and, possibly, other long-term bonded birds.

Concepts: Kilometre, Sociology, Bond, Dynamics, Combination, Corvidae, Raven, Common Raven


Floating oil, plastics, and marine organisms are continually redistributed by ocean surface currents. Prediction of their resulting distribution on the surface is a fundamental, long-standing, and practically important problem. The dominant paradigm is dispersion within the dynamical context of a nondivergent flow: objects initially close together will on average spread apart but the area of surface patches of material does not change. Although this paradigm is likely valid at mesoscales, larger than 100 km in horizontal scale, recent theoretical studies of submesoscales (less than ∼10 km) predict strong surface convergences and downwelling associated with horizontal density fronts and cyclonic vortices. Here we show that such structures can dramatically concentrate floating material. More than half of an array of ∼200 surface drifters covering ∼20 × 20 km2 converged into a 60 × 60 m region within a week, a factor of more than 105 decrease in area, before slowly dispersing. As predicted, the convergence occurred at density fronts and with cyclonic vorticity. A zipperlike structure may play an important role. Cyclonic vorticity and vertical velocity reached 0.001 s-1 and 0.01 ms-1, respectively, which is much larger than usually inferred. This suggests a paradigm in which nearby objects form submesoscale clusters, and these clusters then spread apart. Together, these effects set both the overall extent and the finescale texture of a patch of floating material. Material concentrated at submesoscale convergences can create unique communities of organisms, amplify impacts of toxic material, and create opportunities to more efficiently recover such material.

Concepts: Scientific method, Prediction, Futurology, Prophecy, Kilometre, Paradigm, Convergence, Ocean current


Temperature changes in the Arctic have notable impacts on ecosystem structure and functioning, on soil carbon dynamics, and on the stability of permafrost, thus affecting ecosystem functions and putting man-built infrastructure at risk. Future warming in the Arctic could accelerate important feedbacks in permafrost degradation processes. Therefore it is important to map vulnerable areas most likely to be impacted by temperature changes and at higher risk of degradation, particularly near communities, to assist adaptation to climate change. Currently, these areas are poorly assessed, especially in Greenland. Here we quantify trends in satellite-derived land surface temperatures and modelled air temperatures, validated against observations, across the entire ice-free Greenland. Focus is on the past 30 years, to characterize significant changes and potentially vulnerable regions at a 1 km resolution. We show that recent temperature trends in Greenland vary significantly between seasons and regions and that data with resolutions down to single km2 are critical to map temperature changes for guidance of further local studies and decision-making. Only a fraction of the ice-free Greenland seems vulnerable due to warming when analyzing year 2001-2015, but the most pronounced changes are found in the most populated parts of Greenland. As Greenland represents important gradients of north/south coast/inland/distance to large ice sheets, the conclusions are also relevant in an upscaling to greater Arctic areas.

Concepts: Climate, Kilometre, Soil, Ecosystem, Inuit, Arctic Ocean, Arctic, Global warming


Much literature examines the relationship between the spatial availability of alcohol and alcohol-related harm. This study aims to address an important gap in this evidence by using detailed outlet data to examine recent temporal trends in the sociodemographic distribution of spatial availability for different types of alcohol outlet in England. Descriptive analysis of measures of alcohol outlet density and proximity using extremely high resolution market research data stratified by outlet type and quintiles of area-level deprivation from 2003, 2007, 2010 and 2013 was undertaken and hierarchical linear growth models fitted to explore the significance of socioeconomic differences. We find that overall availability of alcohol changed very little from 2003 to 2013 (density +1.6%), but this conceals conflicting trends by outlet type and area-level deprivation. Mean on-trade density has decreased substantially (-2.2 outlets within 1 km (Inter-Quartile Range (IQR) -3-0), although access to restaurants has increased (+1.0 outlets (IQR 0-1)), while off-trade access has risen substantially (+2.4 outlets (IQR 0-3)). Availability is highest in the most deprived areas (p < 0.0001) although these areas have also seen the greatest falls in on-trade outlet availability (p < 0.0001). This study underlines the importance of using detailed, low-level geographic data to understand patterns and trends in the spatial availability of alcohol. There are significant variations in these trends by outlet type and deprivation level which may have important implications for health inequalities and public health policy.

Concepts: Health care, Health economics, Medicine, Universal health care, Median, Kilometre, Interquartile range, Health care system


A fundamental mystery for dengue and other infectious pathogens is how observed patterns of cases relate to actual chains of individual transmission events. These pathways are intimately tied to the mechanisms by which strains interact and compete across spatial scales. Phylogeographic methods have been used to characterize pathogen dispersal at global and regional scales but have yielded few insights into the local spatiotemporal structure of endemic transmission. Using geolocated genotype (800 cases) and serotype (17,291 cases) data, we show that in Bangkok, Thailand, 60% of dengue cases living <200 meters apart come from the same transmission chain, as opposed to 3% of cases separated by 1 to 5 kilometers. At distances <200 meters from a case (encompassing an average of 1300 people in Bangkok), the effective number of chains is 1.7. This number rises by a factor of 7 for each 10-fold increase in the population of the "enclosed" region. This trend is observed regardless of whether population density or area increases, though increases in density over 7000 people per square kilometer do not lead to additional chains. Within Thailand these chains quickly mix, and by the next dengue season viral lineages are no longer highly spatially structured within the country. In contrast, viral flow to neighboring countries is limited. These findings are consistent with local, density-dependent transmission and implicate densely populated communities as key sources of viral diversity, with home location the focal point of transmission. These findings have important implications for targeted vector control and active surveillance.

Concepts: Demography, Population, Population ecology, Kilometre, Pathogen, Population density, Metre, SI prefix