SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Josephson effect

172

Nonlinear and switchable metamaterials achieved by artificial structuring on the subwavelength scale have become a central topic in photonics research. Switching with only a few quanta of excitation per metamolecule, metamaterial’s elementary building block, is the ultimate goal, achieving which will open new opportunities for energy efficient signal handling and quantum information processing. Recently, arrays of Josephson junction devices have been proposed as a possible solution. However, they require extremely high levels of nanofabrication. Here we introduce a new quantum superconducting metamaterial which exploits the magnetic flux quantization for switching. It does not contain Josephson junctions, making it simple to fabricate and scale into large arrays. The metamaterial was manufactured from a high-temperature superconductor and characterized in the low intensity regime, providing the first observation of the quantum phenomenon of flux exclusion affecting the far-field electromagnetic properties of the metamaterial.

Concepts: Quantum mechanics, Physics, Condensed matter physics, Superconductivity, Josephson effect, SQUID, Magnetic flux quantum, Brian David Josephson

30

The Josephson effect is perhaps the prototypical manifestation of macroscopic phase coherence, and forms the basis of a widely used electronic interferometer–the superconducting quantum interference device (SQUID). In 1965, Maki and Griffin predicted that the thermal current through a temperature-biased Josephson tunnel junction coupling two superconductors should be a stationary periodic function of the quantum phase difference between the superconductors: a temperature-biased SQUID should therefore allow heat currents to interfere, resulting in a thermal version of the electric Josephson interferometer. This phase-dependent mechanism of thermal transport has been the subject of much discussion but, surprisingly, has yet to be realized experimentally. Here we investigate heat exchange between two normal metal electrodes kept at different temperatures and tunnel-coupled to each other through a thermal ‘modulator’ (ref. 5) in the form of a direct-current SQUID. We find that heat transport in the system is phase dependent, in agreement with the original prediction. Our Josephson heat interferometer yields magnetic-flux-dependent temperature oscillations of up to 21 millikelvin in amplitude, and provides a flux-to-temperature transfer coefficient exceeding 60 millikelvin per flux quantum at 235 millikelvin. In addition to confirming the existence of a phase-dependent thermal current unique to Josephson junctions, our results point the way towards the phase-coherent manipulation of heat in solid-state nanocircuits.

Concepts: Condensed matter physics, Phase, Heat transfer, Superconductivity, Josephson effect, SQUID, Magnetic flux quantum, Brian David Josephson

27

In a conventional Josephson junction of graphene, the supercurrent is not turned off even at the charge neutrality point, impeding further development of superconducting quantum information devices based on graphene. Here we fabricate bipolar Josephson junctions of graphene, in which a p-n potential barrier is formed in graphene with two closely spaced superconducting contacts, and realize supercurrent ON/OFF states using electrostatic gating only. The bipolar Josephson junctions of graphene also show fully gate-driven macroscopic quantum tunnelling behaviour of Josephson phase particles in a potential well, where the confinement energy is gate tuneable. We suggest that the supercurrent OFF state is mainly caused by a supercurrent dephasing mechanism due to a random pseudomagnetic field generated by ripples in graphene, in sharp contrast to other nanohybrid Josephson junctions. Our study may pave the way for the development of new gate-tuneable superconducting quantum information devices.

Concepts: Quantum mechanics, Fundamental physics concepts, Condensed matter physics, Superconductivity, Josephson effect, SQUID, Magnetic flux quantum, Brian David Josephson

17

Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubit-based quantum computing. Here we begin to explore how selective design principles deduced from spin-based systems could be used to advance superconducting qubit science. We take an initial step along this path proposing an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is also especially suited to qubits on the basis of variable super-semi junctions.

Concepts: Quantum information science, Condensed matter physics, Nuclear magnetic resonance, Quantum computer, Qubit, Quantum information, Josephson effect, SQUID

4

A hundred years after the discovery of superconductivity, one fundamental prediction of the theory, coherent quantum phase slip (CQPS), has not been observed. CQPS is a phenomenon exactly dual to the Josephson effect; whereas the latter is a coherent transfer of charges between superconducting leads, the former is a coherent transfer of vortices or fluxes across a superconducting wire. In contrast to previously reported observations of incoherent phase slip, CQPS has been only a subject of theoretical study. Its experimental demonstration is made difficult by quasiparticle dissipation due to gapless excitations in nanowires or in vortex cores. This difficulty might be overcome by using certain strongly disordered superconductors near the superconductor-insulator transition. Here we report direct observation of CQPS in a narrow segment of a superconducting loop made of strongly disordered indium oxide; the effect is made manifest through the superposition of quantum states with different numbers of flux quanta. As with the Josephson effect, our observation should lead to new applications in superconducting electronics and quantum metrology.

Concepts: Scientific method, Quantum mechanics, Condensed matter physics, Observation, Superconductivity, Josephson effect, SQUID, Magnetic flux quantum

3

Superconducting electronics based on Josephson junctions are used to sense and process electronic signals with minimal loss, however they are ultrasensitive to magnetic fields, limited in their amplification capabilities, and difficult to manufacture. We have developed a 3 terminal, nanowire-based superconducting electrothermal device which has no Josephson junctions. This device, which we call the nanocryotron, can be patterned from a single thin film of superconducting material with conventional electron-beam lithography. The nanocryotron has a demonstrated gain of >20, can drive impedances of 100 kΩ, and operates in typical ambient magnetic fields. We have additionally applied it both as a digital logic element in a half-adder circuit, and as a digital amplifier for superconducting nanowire single-photon detectors pulses. The nanocryotron has immediate applications in classical and quantum communications, photon sensing, and astronomy, and its input characteristics are suitable for integration with existing superconducting technologies.

Concepts: Electron, Quantum mechanics, Condensed matter physics, Superconductivity, Josephson effect, SQUID, Amplifier, Brian David Josephson

3

Superconducting circuits are exceptionally flexible, enabling many different devices from sensors to quantum computers. Separately, epitaxial semiconductor devices such as spin qubits in silicon offer more limited device variation but extraordinary quantum properties for a solid-state system. It might be possible to merge the two approaches, making single-crystal superconducting devices out of a semiconductor by utilizing the latest atomistic fabrication techniques. Here we propose superconducting devices made from precision hole-doped regions within a silicon (or germanium) single crystal. We analyse the properties of this superconducting semiconductor and show that practical superconducting wires, Josephson tunnel junctions or weak links, superconducting quantum interference devices (SQUIDs) and qubits are feasible. This work motivates the pursuit of ‘bottom-up’ superconductivity for improved or fundamentally different technology and physics.

Concepts: Electron, Condensed matter physics, Integrated circuit, Semiconductor, Silicon, Superconductivity, Josephson effect, SQUID

3

Owing to the low-loss propagation of electromagnetic signals in superconductors, Josephson junctions constitute ideal building blocks for quantum memories, amplifiers, detectors and high-speed processing units, operating over a wide band of microwave frequencies. Nevertheless, although transport in superconducting wires is perfectly lossless for direct current, transport of radio-frequency signals can be dissipative in the presence of quasiparticle excitations above the superconducting gap. Moreover, the exact mechanism of this dissipation in Josephson junctions has never been fully resolved experimentally. In particular, Josephson’s key theoretical prediction that quasiparticle dissipation should vanish in transport through a junction when the phase difference across the junction is π (ref. 2) has never been observed. This subtle effect can be understood as resulting from the destructive interference of two separate dissipative channels involving electron-like and hole-like quasiparticles. Here we report the experimental observation of this quantum coherent suppression of quasiparticle dissipation across a Josephson junction. As the average phase bias across the junction is swept through π, we measure an increase of more than one order of magnitude in the energy relaxation time of a superconducting artificial atom. This striking suppression of dissipation, despite the presence of lossy quasiparticle excitations above the superconducting gap, provides a powerful tool for minimizing decoherence in quantum electronic systems and could be directly exploited in quantum information experiments with superconducting quantum bits.

Concepts: Electron, Quantum mechanics, Condensed matter physics, Superconductivity, Josephson effect, SQUID, Elementary charge, Magnetic flux quantum

2

Superconducting electronic devices have reemerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation, and long coherence times. An ultimate demonstration of coherence is lasing. We use one of the fundamental aspects of superconductivity, the ac Josephson effect, to demonstrate a laser made from a Josephson junction strongly coupled to a multimode superconducting cavity. A dc voltage bias applied across the junction provides a source of microwave photons, and the circuit’s nonlinearity allows for efficient down-conversion of higher-order Josephson frequencies to the cavity’s fundamental mode. The simple fabrication and operation allows for easy integration with a range of quantum devices, allowing for efficient on-chip generation of coherent microwave photons at low temperatures.

Concepts: Electron, Quantum mechanics, Fundamental physics concepts, Condensed matter physics, Superconductivity, Josephson effect, SQUID, Magnetic flux quantum

1

The two-dimensional superconductor that forms at the interface between the complex oxides lanthanum aluminate (LAO) and strontium titanate (STO) has several intriguing properties that set it apart from conventional superconductors. Most notably, an electric field can be used to tune its critical temperature (Tc; ref. 7), revealing a dome-shaped phase diagram reminiscent of high-Tc superconductors. So far, experiments with oxide interfaces have measured quantities that probe only the magnitude of the superconducting order parameter and are not sensitive to its phase. Here, we perform phase-sensitive measurements by realizing the first superconducting quantum interference devices (SQUIDs) at the LAO/STO interface. Furthermore, we develop a new paradigm for the creation of superconducting circuit elements, where local gates enable the in situ creation and control of Josephson junctions. These gate-defined SQUIDs are unique in that the entire device is made from a single superconductor with purely electrostatic interfaces between the superconducting reservoir and the weak link. We complement our experiments with numerical simulations and show that the low superfluid density of this interfacial superconductor results in a large, gate-controllable kinetic inductance of the SQUID. Our observation of robust quantum interference opens up a new pathway to understanding the nature of superconductivity at oxide interfaces.

Concepts: Quantum mechanics, Fundamental physics concepts, Condensed matter physics, Phase transition, Superconductivity, Josephson effect, SQUID, Superfluid film