SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Jet lag

441

The sleep-wake cycle and circadian rhythmicity both contribute to brain function, but whether this contribution differs between men and women and how it varies across cognitive domains and subjective dimensions has not been established. We examined the circadian and sleep-wake-dependent regulation of cognition in 16 men and 18 women in a forced desynchrony protocol and quantified the separate contributions of circadian phase, prior sleep, and elapsed time awake on cognition and sleep. The largest circadian effects were observed for reported sleepiness, mood, and reported effort; the effects on working memory and temporal processing were smaller. Although these effects were seen in both men and women, there were quantitative differences. The amplitude of the circadian modulation was larger in women in 11 of 39 performance measures so that their performance was more impaired in the early morning hours. Principal components analysis of the performance measures yielded three factors, accuracy, effort, and speed, which reflect core performance characteristics in a range of cognitive tasks and therefore are likely to be important for everyday performance. The largest circadian modulation was observed for effort, whereas accuracy exhibited the largest sex difference in circadian modulation. The sex differences in the circadian modulation of cognition could not be explained by sex differences in the circadian amplitude of plasma melatonin and electroencephalographic slow-wave activity. These data establish the impact of circadian rhythmicity and sex on waking cognition and have implications for understanding the regulation of brain function, cognition, and affect in shift-work, jetlag, and aging.

Concepts: Psychology, Male, Gender, Sleep, Cognition, Circadian rhythm, Jet lag, Melatonin

167

Laboratory studies have demonstrated that circadian clocks align physiology and behavior to 24-h environmental cycles. Examination of athletic performance has been used to discern the functions of these clocks in humans outside of controlled settings. Here, we examined the effects of jet lag, that is, travel that shifts the alignment of 24-h environmental cycles relative to the endogenous circadian clock, on specific performance metrics in Major League Baseball. Accounting for potential differences in home and away performance, travel direction, and team confounding variables, we observed that jet-lag effects were largely evident after eastward travel with very limited effects after westward travel, consistent with the >24-h period length of the human circadian clock. Surprisingly, we found that jet lag impaired major parameters of home-team offensive performance, for example, slugging percentage, but did not similarly affect away-team offensive performance. On the other hand, jet lag impacted both home and away defensive performance. Remarkably, the vast majority of these effects for both home and away teams could be explained by a single measure, home runs allowed. Rather than uniform effects, these results reveal surprisingly specific effects of circadian misalignment on athletic performance under natural conditions.

Concepts: Circadian rhythm, Period, Baseball, Jet lag, Major League Baseball, National League, Alex Rodriguez, Barry Bonds

166

In the past 50 y, there has been a decline in average sleep duration and quality, with adverse consequences on general health. A representative survey of 1,508 American adults recently revealed that 90% of Americans used some type of electronics at least a few nights per week within 1 h before bedtime. Mounting evidence from countries around the world shows the negative impact of such technology use on sleep. This negative impact on sleep may be due to the short-wavelength-enriched light emitted by these electronic devices, given that artificial-light exposure has been shown experimentally to produce alerting effects, suppress melatonin, and phase-shift the biological clock. A few reports have shown that these devices suppress melatonin levels, but little is known about the effects on circadian phase or the following sleep episode, exposing a substantial gap in our knowledge of how this increasingly popular technology affects sleep. Here we compare the biological effects of reading an electronic book on a light-emitting device (LE-eBook) with reading a printed book in the hours before bedtime. Participants reading an LE-eBook took longer to fall asleep and had reduced evening sleepiness, reduced melatonin secretion, later timing of their circadian clock, and reduced next-morning alertness than when reading a printed book. These results demonstrate that evening exposure to an LE-eBook phase-delays the circadian clock, acutely suppresses melatonin, and has important implications for understanding the impact of such technologies on sleep, performance, health, and safety.

Concepts: Sleep, Sleep disorder, Circadian rhythm, Electronics, Delayed sleep phase syndrome, Chronotype, Jet lag, Melatonin

35

A diurnal rhythm of eating-fasting promotes health, but the eating pattern of humans is rarely assessed. Using a mobile app, we monitored ingestion events in healthy adults with no shift-work for several days. Most subjects ate frequently and erratically throughout wakeful hours, and overnight fasting duration paralleled time in bed. There was a bias toward eating late, with an estimated <25% of calories being consumed before noon and >35% after 6 p.m. “Metabolic jetlag” resulting from weekday/weekend variation in eating pattern akin to travel across time zones was prevalent. The daily intake duration (95% interval) exceeded 14.75 hr for half of the cohort. When overweight individuals with >14 hr eating duration ate for only 10-11 hr daily for 16 weeks assisted by a data visualization (raster plot of dietary intake pattern, “feedogram”) that we developed, they reduced body weight, reported being energetic, and improved sleep. Benefits persisted for a year.

Concepts: Health, Human, Nutrition, Sleep, Circadian rhythm, Circadian rhythms, Diurnality, Jet lag

26

Discrepancies between sleep timing on workdays and weekends, also known as social jetlag (SJL), affect the majority of the population and have been found to be associated with increased health risk and health-impairing behaviors. In this study, we explored the relationship between SJL and academic performance in a sample of undergraduates of the Semmelweis University. We assessed SJL and other sleep-related parameters with the Munich ChronoType Questionnaire (MCTQ) (n = 753). Academic performance was measured by the average grade based on weekly test results as well as scores acquired on the final test (n = 247). The average mid-sleep point on free days in the Hungarian sample fits well the regression line plotted for longitudes within the Central European Time Zone and chronotypes, confirming that sunlight has a major impact on chronotype. Multivariate analysis showed negative effect of SJL on the weekly average grade (p = 0.028, n = 247) during the lecture term with its highly regular teaching schedules, while this association disappeared in the exam period (p = 0.871, n = 247) when students had no scheduled obligations (lower SJL). We also analyzed the relationship between the time of the weekly tests and academic performance and found that students with later sleep times on free days achieved worse in the morning (p = 0.017, n = 129), while the inverse tendency was observed for the afternoon test-takers (p = 0.10, n = 118). We did not find significant association between academic performance and sleep duration or sleep debt on work days. Our data suggest that circadian misalignment can have a significant negative effect on academic performance. One possible reason for this misalignment is socially enforced sleep times.

Concepts: Time, Sleep, Circadian rhythm, Chronotype, Circadian rhythm sleep disorder, Jet lag, Time zone, Central European Time

22

Shift work or transmeridian travel can desynchronize the body’s circadian rhythms from local light-dark cycles. The mammalian suprachiasmatic nucleus (SCN) generates and entrains daily rhythms in physiology and behavior. Paradoxically, we found that vasoactive intestinal polypeptide (VIP), a neuropeptide implicated in synchrony among SCN cells, can also desynchronize them. The degree and duration of desynchronization among SCN neurons depended on both the phase and the dose of VIP. A model of the SCN consisting of coupled stochastic cells predicted both the phase- and the dose-dependent response to VIP and that the transient phase desynchronization, or “phase tumbling”, could arise from intrinsic, stochastic noise in small populations of key molecules (notably, Period mRNA near its daily minimum). The model also predicted that phase tumbling following brief VIP treatment would accelerate entrainment to shifted environmental cycles. We tested this using a prepulse of VIP during the day before a shift in either a light cycle in vivo or a temperature cycle in vitro. Although VIP during the day does not shift circadian rhythms, the VIP pretreatment approximately halved the time required for mice to reentrain to an 8-h shifted light schedule and for SCN cultures to reentrain to a 10-h shifted temperature cycle. We conclude that VIP below 100 nM synchronizes SCN cells and above 100 nM reduces synchrony in the SCN. We show that exploiting these mechanisms that transiently reduce cellular synchrony before a large shift in the schedule of daily environmental cues has the potential to reduce jet lag.

Concepts: In vivo, In vitro, Circadian rhythm, Chronobiology, Circadian rhythms, Circadian rhythm sleep disorder, Jet lag, Melatonin

21

Retinal photoreceptors entrain the circadian system to the solar day. This photic resetting involves cAMP response element binding protein (CREB)-mediated upregulation of Per genes within individual cells of the suprachiasmatic nuclei (SCN). Our detailed understanding of this pathway is poor, and it remains unclear why entrainment to a new time zone takes several days. By analyzing the light-regulated transcriptome of the SCN, we have identified a key role for salt inducible kinase 1 (SIK1) and CREB-regulated transcription coactivator 1 (CRTC1) in clock re-setting. An entrainment stimulus causes CRTC1 to coactivate CREB, inducing the expression of Per1 and Sik1. SIK1 then inhibits further shifts of the clock by phosphorylation and deactivation of CRTC1. Knockdown of Sik1 within the SCN results in increased behavioral phase shifts and rapid re-entrainment following experimental jet lag. Thus SIK1 provides negative feedback, acting to suppress the effects of light on the clock. This pathway provides a potential target for the regulation of circadian rhythms.

Concepts: Gene expression, Transcription factor, Photoreceptor cell, Circadian rhythm, Chronobiology, Circadian rhythms, PER1, Jet lag

16

Jet lag arises from a misalignment of circadian biological timing with the timing of human activity, and is caused by rapid transmeridian travel. Jet lag’s symptoms, such as depressed cognitive alertness, also arise from work and social schedules misaligned with the timing of the circadian clock. Using experimentally validated mathematical models, we develop a new methodology to find mathematically optimal schedules of light exposure and avoidance for rapidly re-entraining the human circadian system. In simulations, our schedules are found to significantly outperform other recently proposed schedules. Moreover, our schedules appear to be significantly more robust to both noise in light and to inter-individual variations in endogenous circadian period than other proposed schedules. By comparing the optimal schedules for thousands of different situations, and by using general mathematical arguments, we are also able to translate our findings into general principles of optimal circadian re-entrainment. These principles include: 1) a class of schedules where circadian amplitude is only slightly perturbed, optimal for dim light and for small shifts 2) another class of schedules where shifting occurs along the shortest path in phase-space, optimal for bright light and for large shifts 3) the determination that short light pulses are less effective than sustained light if the goal is to re-entrain quickly, and 4) the determination that length of daytime should be significantly shorter when delaying the clock than when advancing it.

Concepts: Mathematics, Operations research, Circadian rhythm, Period, Circadian rhythms, Delayed sleep phase syndrome, Jet lag, Melatonin

12

Chronic circadian disruption due to shift work or frequent travel across time zones leads to jet-lag and an increased risk of diabetes, cardiovascular disease, and cancer. The development of new pharmaceuticals to treat circadian disorders, however, is costly and hugely time-consuming. We therefore performed a high-throughput chemical screen of existing drugs for circadian clock modulators in human U2OS cells, with the aim of repurposing known bioactive compounds. Approximately 5% of the drugs screened altered circadian period, including the period-shortening compound dehydroepiandrosterone (DHEA; also known as prasterone). DHEA is one of the most abundant circulating steroid hormones in humans and is available as a dietary supplement in the USA Dietary administration of DHEA to mice shortened free-running circadian period and accelerated re-entrainment to advanced light-dark (LD) cycles, thereby reducing jet-lag. Our drug screen also revealed the involvement of tyrosine kinases, ABL1 and ABL2, and the BCR serine/threonine kinase in regulating circadian period. Thus, drug repurposing is a useful approach to identify new circadian clock modulators and potential therapies for circadian disorders.

Concepts: Pharmacology, Medicine, Signal transduction, Protein kinase, Circadian rhythm, Circadian rhythms, Jet lag, Melatonin

11

Circadian rhythms are 24-hr oscillations that control a variety of biological processes in living systems, including two hallmarks of cancer, cell division and metabolism. Circadian rhythm disruption by shift work is associated with greater risk for cancer development and poor prognosis, suggesting a putative tumor-suppressive role for circadian rhythm homeostasis. Using a genetically engineered mouse model of lung adenocarcinoma, we have characterized the effects of circadian rhythm disruption on lung tumorigenesis. We demonstrate that both physiologic perturbation (jet lag) and genetic mutation of the central circadian clock components decreased survival and promoted lung tumor growth and progression. The core circadian genes Per2 and Bmal1 were shown to have cell-autonomous tumor-suppressive roles in transformation and lung tumor progression. Loss of the central clock components led to increased c-Myc expression, enhanced proliferation, and metabolic dysregulation. Our findings demonstrate that both systemic and somatic disruption of circadian rhythms contribute to cancer progression.

Concepts: DNA, Genetics, Cancer, Evolution, Circadian rhythm, ARNTL, Circadian rhythms, Jet lag