Discover the most talked about and latest scientific content & concepts.

Concept: Isotope


Almost 150 years after the first identification of Neandertal skeletal material, the cognitive and symbolic abilities of these populations remain a subject of intense debate. We present 99 new Neandertal remains from the Troisième caverne of Goyet (Belgium) dated to 40,500-45,500 calBP. The remains were identified through a multidisciplinary study that combines morphometrics, taphonomy, stable isotopes, radiocarbon dating and genetic analyses. The Goyet Neandertal bones show distinctive anthropogenic modifications, which provides clear evidence for butchery activities as well as four bones having been used for retouching stone tools. In addition to being the first site to have yielded multiple Neandertal bones used as retouchers, Goyet not only provides the first unambiguous evidence of Neandertal cannibalism in Northern Europe, but also highlights considerable diversity in mortuary behaviour among the region’s late Neandertal population in the period immediately preceding their disappearance.

Concepts: Psychology, Critical thinking, Belgium, Isotope, Neanderthal, Northern Europe, Radiocarbon dating, Carbon-14


The contamination of Japan after the Fukushima accident has been investigated mainly for volatile fission products, but only sparsely for actinides such as plutonium. Only small releases of actinides were estimated in Fukushima. Plutonium is still omnipresent in the environment from previous atmospheric nuclear weapons tests. We investigated soil and plants sampled at different hot spots in Japan, searching for reactor-borne plutonium using its isotopic ratio (240)Pu/(239)Pu. By using accelerator mass spectrometry, we clearly demonstrated the release of Pu from the Fukushima Daiichi power plant: While most samples contained only the radionuclide signature of fallout plutonium, there is at least one vegetation sample whose isotope ratio (0.381 ± 0.046) evidences that the Pu originates from a nuclear reactor ((239+240)Pu activity concentration 0.49 Bq/kg). Plutonium content and isotope ratios differ considerably even for very close sampling locations, e.g. the soil and the plants growing on it. This strong localization indicates a particulate Pu release, which is of high radiological risk if incorporated.

Concepts: Mass spectrometry, Nuclear fission, Isotope, Nuclear weapon, Nuclear power, Nuclear proliferation, Radioactive contamination, Isotope ratio mass spectrometry


We have examined the remains of a Pilgrim burial from St Mary Magdalen, Winchester. The individual was a young adult male, aged around 18-25 years at the time of death. Radiocarbon dating showed the remains dated to the late 11th-early 12th centuries, a time when pilgrimages were at their height in Europe. Several lines of evidence in connection with the burial suggested this was an individual of some means and prestige. Although buried within the leprosarium cemetery, the skeleton showed only minimal skeletal evidence for leprosy, which was confined to the bones of the feet and legs. Nonetheless, molecular testing of several skeletal elements, including uninvolved bones all showed robust evidence of DNA from Mycobacterium leprae, consistent with the lepromatous or multibacillary form of the disease. We infer that in life, this individual almost certainly suffered with multiple soft tissue lesions. Genotyping of the M.leprae strain showed this belonged to the 2F lineage, today associated with cases from South-Central and Western Asia. During osteological examination it was noted that the cranium and facial features displayed atypical morphology for northern European populations. Subsequently, geochemical isotopic analyses carried out on tooth enamel indicated that this individual was indeed not local to the Winchester region, although it was not possible to be more specific about their geographic origin.

Concepts: Bone, Mycobacterium, Isotope, Skeleton, Leprosy, Mycobacterium leprae, The Passion of the Christ, Mary Magdalene


Hunter-gatherers living in Europe during the transition from the late Pleistocene to the Holocene intensified food acquisition by broadening the range of resources exploited to include marine taxa. However, little is known on the nature of this dietary change in the Mediterranean Basin. A key area to investigate this issue is the archipelago of the Ègadi Islands, most of which were connected to Sicily until the early Holocene. The site of Grotta d'Oriente, on the present-day island of Favignana, was occupied by hunter-gatherers when Postglacial environmental changes were taking place (14,000-7,500 cal BP). Here we present the results of AMS radiocarbon dating, palaeogenetic and isotopic analyses undertaken on skeletal remains of the humans buried at Grotta d'Oriente. Analyses of the mitochondrial hypervariable first region of individual Oriente B, which belongs to the HV-1 haplogroup, suggest for the first time on genetic grounds that humans living in Sicily during the early Holocene could have originated from groups that migrated from the Italian Peninsula around the Last Glacial Maximum. Carbon and nitrogen isotope analyses show that the Upper Palaeolithic and Mesolithic hunter-gatherers of Favignana consumed almost exclusively protein from terrestrial game and that there was only a slight increase in marine food consumption from the late Pleistocene to the early Holocene. This dietary change was similar in scale to that at sites on mainland Sicily and in the rest of the Mediterranean, suggesting that the hunter-gatherers of Grotta d'Oriente did not modify their subsistence strategies specifically to adapt to the progressive isolation of Favignana. The limited development of technologies for intensively exploiting marine resources was probably a consequence both of Mediterranean oligotrophy and of the small effective population size of these increasingly isolated human groups, which made innovation less likely and prevented transmission of fitness-enhancing adaptations.

Concepts: Human, Mediterranean Sea, Isotope, Pleistocene, Paleolithic, Holocene, Last Glacial Maximum, Stone Age


Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is an important method for protein structure-function analysis. The bottom-up approach uses protein digestion to localize deuteration to higher resolution, and the essential measurement involves centroid mass determinations on a very large set of peptides. In the course of evaluating systems for various projects, we established two HDX-MS platforms that consisted of an FT-MS and a high-resolution QTOF mass spectrometer, each with matched front-end fluidic systems. Digests of proteins spanning a 20-110kDa range were deuterated to equilibrium, and figures-of-merit for a typical bottom-up HDX-MS experiment were compared for each platform. The Orbitrap Velos identified 64% more peptides than the 5600 QTOF, with a 42% overlap between the two systems, independent of protein size. Precision in deuterium measurements using the Orbitrap marginally exceeded that of the QTOF, depending on the Orbitrap resolution setting. However, the unique nature of FT-MS data generates situations where deuteration measurements can be inaccurate, due to destructive interference arising from mismatches in elemental mass defects. This is shown through the analysis of the peptides common to both platforms, where deuteration values can be as low as 35% of the expected values, depending on FT-MS resolution, peptide length and charge state. These findings are supported by simulations of Orbitrap transients, and highlight that caution should be exercised in deriving centroid mass values from FT transients that do not support baseline separation of the full isotopic composition.

Concepts: Protein, Protein structure, Spectroscopy, Mass spectrometry, Peptide, In-gel digestion, Isotope, Hydrogen-deuterium exchange


BACKGROUND: The characterization of fast-decaying radiotracers that are labeled with carbon-11 (t1/2 = 20.38 min), including critical measurement of specific radioactivity (activity per mole at a specific time) before release for use in positron-emission tomography (PET), has relied heavily on chromatographic plus radiometric measurements, each of which may be vulnerable to significant errors. Thus, we aimed to develop a mass-specific detection method using sensitive liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) for identifying 11C-labeled tracers and for verifying their specific radioactivities. METHODS: The LC-MS/MS was tuned and set up with methods to generate and measure the product ions specific for carbon-11 species and M + 1 carrier (predominantly the carbon-13 isotopologue) in four 11C-labeled tracers. These radiotracers were synthesized and then analyzed before extensive carbon-11 decay. The peak areas of carbon-11 species and M + 1 carrier from the LC-MS/MS measurement and the calculated abundances of carbon-12 carrier and M + 1 radioactive species gave the mole fraction of carbon-11 species in each sample. This value upon multiplication with the theoretical specific radioactivity of carbon-11 gave the specific radioactivity of the radiotracer. RESULTS: LC-MS/MS of each 11C-labeled tracer generated the product ion peaks for carbon-11 species and M + 1 carrier at the expected LC retention time. The intensity of the radioactive peak diminished as time elapsed and was undetectable after six half-lives of carbon-11. Measurements of radiotracer-specific radioactivity determined solely by LC-MS/MS at timed intervals gave a half-life for carbon-11 (20.43 min) in excellent agreement with the value obtained radiometrically. Additionally, the LC-MS/MS measurement gave specific radioactivity values (83 to 505 GBq/mumol) in good agreement with those from conventional radiometric methods. CONCLUSIONS: C-Labeled tracers were characterized at a fundamental level involving isolation and mass detection of extremely low-abundance carbon-11 species along with the M + 1 carrier counterpart. This LC-MS/MS method for characterizing fast-decaying radiotracers is valuable in both the development and production of PET radiopharmaceuticals.

Concepts: Time, Measurement, Positron emission tomography, Radioactive decay, Isotope, Half-life, Radiometric dating, Carbon-12


The timing and nature of igneous activity recorded at a single Mars ejection site can be determined from the isotope analyses of Martian meteorites. Northwest Africa (NWA) 7635 has an Sm-Nd crystallization age of 2.403 ± 0.140 billion years, and isotope data indicate that it is derived from an incompatible trace element-depleted mantle source similar to that which produced a geochemically distinct group of 327- to 574-million-year-old “depleted” shergottites. Cosmogenic nuclide data demonstrate that NWA 7635 was ejected from Mars 1.1 million years ago (Ma), as were at least 10 other depleted shergottites. The shared ejection age is consistent with a common ejection site for these meteorites. The spatial association of 327- to 2403-Ma depleted shergottites indicates >2 billion years of magmatism from a long-lived and geochemically distinct volcanic center near the ejection site.

Concepts: Mars, Isotope, Meteorite, Basalt, Olivine, Mars meteorite, Chassigny


High-temperature condensates found in meteorites display uranium isotopic variations ((235)U/(238)U), which complicate dating the solar system’s formation and whose origin remains mysterious. It is possible that these variations are due to the decay of the short-lived radionuclide (247)Cm (t ½ = 15.6 My) into (235)U, but they could also be due to uranium kinetic isotopic fractionation during condensation. We report uranium isotope measurements of meteoritic refractory inclusions that reveal excesses of (235)U reaching ~+6% relative to average solar system composition, which can only be due to the decay of (247)Cm. This allows us to constrain the (247)Cm/(235)U ratio at solar system formation to (1.1 ± 0.3) × 10(-4). This value provides new clues on the universality of the nucleosynthetic r-process of rapid neutron capture.

Concepts: Galaxy, Sun, Supernova, Solar System, Neutron, Isotope, Cosmic dust, Neutron capture


The Fukushima Daiichi Nuclear Power Plant (FNPP) accident released large amounts of radioactive substances into the environment. In order to provide basic information for biokinetics of radionuclides and for dose assessment of internal exposure brought by the FNPP accident, we determined the activity concentration of radionuclides in the organs of 79 cattle within a 20-km radius around the FNPP. In all the specimens examined, deposition of Cesium-134 ((134)Cs, half-life: 2.065 y) and (137)Cs (30.07 y) was observed. Furthermore, organ-specific deposition of radionuclides with relatively short half-lives was detected, such as silver-110m ((110m)Ag, 249.8 d) in the liver and tellurium-129m ((129m)Te, 33.6 d) in the kidney. Regression analysis showed a linear correlation between the radiocesium activity concentration in whole peripheral blood (PB) and that in each organ. The resulting slopes were organ dependent with the maximum value of 21.3 being obtained for skeletal muscles (R(2) = 0.83, standard error (SE) = 0.76). Thus, the activity concentration of (134) Cs and (137)Cs in an organ can be estimated from that in PB. The level of radioactive cesium in the organs of fetus and infants were 1.19-fold (R(2) = 0.62, SE = 0.12), and 1.51-fold (R(2) = 0.70, SE = 0.09) higher than that of the corresponding maternal organ, respectively. Furthermore, radiocesium activity concentration in organs was found to be dependent on the feeding conditions and the geographic location of the cattle. This study is the first to reveal the detailed systemic distribution of radionuclides in cattle attributed to the FNPP accident.

Concepts: Kidney, Chernobyl disaster, Liver, Radioactive decay, Uranium, Nuclear fission, Isotope, Half-life


Food contamination caused by radioisotopes released from the Fukushima Dai-ichi nuclear power plant is of great public concern. The contamination risk for food items should be estimated depending on the characteristics and geographic environments of each item. However, evaluating current and future risk for food items is generally difficult because of small sample sizes, high detection limits, and insufficient survey periods. We evaluated the risk for aquatic food items exceeding a threshold of the radioactive cesium in each species and location using a statistical model. Here we show that the overall contamination risk for aquatic food items is very low. Some freshwater biota, however, are still highly contaminated, particularly in Fukushima. Highly contaminated fish generally tend to have large body size and high trophic levels.

Concepts: Sample size, Chernobyl disaster, Nuclear medicine, Nuclear fission, Isotope, Coal, Nuclear power, Radioactive contamination