SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Ischemia

528

Background Thrombectomy is currently recommended for eligible patients with stroke who are treated within 6 hours after the onset of symptoms. Methods We conducted a multicenter, randomized, open-label trial, with blinded outcome assessment, of thrombectomy in patients 6 to 16 hours after they were last known to be well and who had remaining ischemic brain tissue that was not yet infarcted. Patients with proximal middle-cerebral-artery or internal-carotid-artery occlusion, an initial infarct size of less than 70 ml, and a ratio of the volume of ischemic tissue on perfusion imaging to infarct volume of 1.8 or more were randomly assigned to endovascular therapy (thrombectomy) plus standard medical therapy (endovascular-therapy group) or standard medical therapy alone (medical-therapy group). The primary outcome was the ordinal score on the modified Rankin scale (range, 0 to 6, with higher scores indicating greater disability) at day 90. Results The trial was conducted at 38 U.S. centers and terminated early for efficacy after 182 patients had undergone randomization (92 to the endovascular-therapy group and 90 to the medical-therapy group). Endovascular therapy plus medical therapy, as compared with medical therapy alone, was associated with a favorable shift in the distribution of functional outcomes on the modified Rankin scale at 90 days (odds ratio, 2.77; P<0.001) and a higher percentage of patients who were functionally independent, defined as a score on the modified Rankin scale of 0 to 2 (45% vs. 17%, P<0.001). The 90-day mortality rate was 14% in the endovascular-therapy group and 26% in the medical-therapy group (P=0.05), and there was no significant between-group difference in the frequency of symptomatic intracranial hemorrhage (7% and 4%, respectively; P=0.75) or of serious adverse events (43% and 53%, respectively; P=0.18). Conclusions Endovascular thrombectomy for ischemic stroke 6 to 16 hours after a patient was last known to be well plus standard medical therapy resulted in better functional outcomes than standard medical therapy alone among patients with proximal middle-cerebral-artery or internal-carotid-artery occlusion and a region of tissue that was ischemic but not yet infarcted. (Funded by the National Institute of Neurological Disorders and Stroke; DEFUSE 3 ClinicalTrials.gov number, NCT02586415 .).

Concepts: Medicine, Blood, Stroke, Therapy, Modified Rankin Scale, Ischemia, Randomness, Disability

335

 To quantify the dose-response associations between total physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events.

Concepts: Cancer, Breast cancer, Hypertension, Obesity, Stroke, Heart disease, Ischemia, Ischaemic heart disease

316

Depressive disorders were a leading cause of burden in the Global Burden of Disease (GBD) 1990 and 2000 studies. Here, we analyze the burden of depressive disorders in GBD 2010 and present severity proportions, burden by country, region, age, sex, and year, as well as burden of depressive disorders as a risk factor for suicide and ischemic heart disease.

Concepts: Death, Risk, 1920, Heart disease, Ischemia, Major depressive disorder, Ischaemic heart disease, 1922

247

Percutaneous coronary intervention (PCI) relieves angina in patients with stable ischemic heart disease, but clinical trials have not shown that it improves survival. Between June 1999 and January 2004, we randomly assigned 2287 patients with stable ischemic heart disease to an initial management strategy of optimal medical therapy alone (medical-therapy group) or optimal medical therapy plus PCI (PCI group) and did not find a significant difference in the rate of survival during a median follow-up of 4.6 years. We now report the rate of survival among the patients who were followed for up to 15 years.

Concepts: Medicine, Cardiology, Ischemia

172

The incidence of Alzheimer’s disease increases in people who have had an ischemic episode. Furthermore, APP expression is increased following ischemic or hypoxic conditions, as is the production of the Aβ peptide. To address the question of why APP and Aβ are increased in hypoxic and ischemic conditions we induced an ischemic episode in APP knockout mice (APP-/-) and BACE1 knockout mice (BACE-/-). We find that both APP-/- and BACE-/- mice have a dramatically increased risk of mortality as a result of cerebral ischemia. Furthermore, APP knockout mice have reduced cerebral blood flow in response to hypoxia, while wild-type mice maintain or increase cerebral blood flow to the same conditions. The transcription factor, serum response factor (SRF), and calcium-binding molecule, calsequestrin, both involved in vascular regulation, are significantly altered in the brains of APP-/- mice compared to wild type controls. These results show that APP regulates cerebral blood flow in response to hypoxia, and that it, and its cleavage fragments, are crucial for rapid adaptation to ischemic conditions.

Concepts: Alzheimer's disease, Gene, Gene expression, Stroke, Traumatic brain injury, Transcription factor, Ischemia, Hypoxia

170

Carbon monoxide (CO) at low concentrations imparts protective effects in numerous preclinical small animal models of brain injury. Evidence of protection in large animal models of cerebral injury, however, has not been tested. Neurologic deficits following open heart surgery are likely related in part to ischemia reperfusion injury that occurs during cardiopulmonary bypass surgery. Using a model of deep hypothermic circulatory arrest (DHCA) in piglets, we evaluated the effects of CO to reduce cerebral injury. DHCA and cardiopulmonary bypass (CPB) induced significant alterations in metabolic demands, including a decrease in the oxygen/glucose index (OGI), an increase in lactate/glucose index (LGI) and a rise in cerebral blood pressure that ultimately resulted in increased cell death in the neocortex and hippocampus that was completely abrogated in piglets preconditioned with a low, safe dose of CO. Moreover CO-treated animals maintained normal, pre-CPB OGI and LGI and corresponding cerebral sinus pressures with no change in systemic hemodynamics or metabolic intermediates. Collectively, our data demonstrate that inhaled CO may be beneficial in preventing cerebral injury resulting from DHCA and offer important therapeutic options in newborns undergoing DHCA for open heart surgery.

Concepts: Brain, Mammal, Ischemia, Reperfusion injury, Therapeutic hypothermia, Cardiothoracic surgery, Cardiac surgery, Postperfusion syndrome

167

Flavonoids have known anti-inflammatory and antioxidative actions, and they have been described as neuroprotective and able to reduce damage in CNS diseases. We evaluated the action of the flavonoid rutin in an animal model of focal cortical ischemia induced by unilateral thermocoagulation of superficial blood vessels of motor (M1) and somatosensory (S1) primary cortices. Ischemic rats were submitted to daily injections (i.p.) for five days, starting immediately after induction of ischemia. We tested two doses: 50mg/kg or 100mg/kg of body weight. Sensorimotor tests were used to evaluate functional recovery. Bioavailability in plasma was done by chromatographic analysis. The effect of treatment in lesion volume and neurodegeneration was evaluated 48h and 72h after ischemia, respectively. We observed significant sensorimotor recovery induced by rutin, and the dose of 50mg/kg had more pronounced effect. Thus, this dose was used in further analyses. Plasma availability of rutin was detected from 2h to at least 8h after ischemia. The treatment did not result in reduction of lesion volume but reduced the number of degenerated neurons at the periphery of the lesion. The results suggest rutin as an efficient drug to treat brain ischemia since it was able to promote significant recovery of sensorimotor loss, which was correlated to the reduction of neurodegeneration in the periphery of cortical injury. Increasing studies with rutin and other flavonoids might give support for further clinical trials with these drugs.

Concepts: Blood vessel, Stroke, Traumatic brain injury, Cerebral cortex, Ischemia, Flavonoid, Brain ischemia, Rutin

166

Pyrexia soon after stroke is associated with severe stroke and poor functional outcome. Few studies have assessed brain temperature after stroke in patients, so little is known of its associations with body temperature, stroke severity, or outcome. We measured temperatures in ischemic and normal-appearing brain using (1)H-magnetic resonance spectroscopy and its correlations with body (tympanic) temperature measured four-hourly, infarct growth by 5 days, early neurologic (National Institute of Health Stroke Scale, NIHSS) and late functional outcome (death or dependency). Among 40 patients (mean age 73 years, median NIHSS 7, imaged at median 17 hours), temperature in ischemic brain was higher than in normal-appearing brain on admission (38.6°C-core, 37.9°C-contralateral hemisphere, P=0.03) but both were equally elevated by 5 days; both were higher than tympanic temperature. Ischemic lesion temperature was not associated with NIHSS or 3-month functional outcome; in contrast, higher contralateral normal-appearing brain temperature was associated with worse NIHSS, infarct expansion and poor functional outcome, similar to associations for tympanic temperature. We conclude that brain temperature is higher than body temperature; that elevated temperature in ischemic brain reflects a local tissue response to ischemia, whereas pyrexia reflects the systemic response to stroke, occurs later, and is associated with adverse outcomes.Journal of Cerebral Blood Flow & Metabolism advance online publication, 10 April 2013; doi:10.1038/jcbfm.2013.52.

Concepts: Myocardial infarction, Stroke, Traumatic brain injury, Temperature, Neurology, Ischemia, Infarction, Embolism

165

164

The mortality after aneurysmal subarachnoid hemorrhage (SAH) is 50%, and most survivors suffer severe functional and cognitive deficits. Half of SAH patients deteriorate 5 to 14 days after the initial bleeding, so-called delayed cerebral ischemia (DCI). Although often attributed to vasospasms, DCI may develop in the absence of angiographic vasospasms, and therapeutic reversal of angiographic vasospasms fails to improve patient outcome. The etiology of chronic neurodegenerative changes after SAH remains poorly understood. Brain oxygenation depends on both cerebral blood flow (CBF) and its microscopic distribution, the so-called capillary transit time heterogeneity (CTH). In theory, increased CTH can therefore lead to tissue hypoxia in the absence of severe CBF reductions, whereas reductions in CBF, paradoxically, improve brain oxygenation if CTH is critically elevated. We review potential sources of elevated CTH after SAH. Pericyte constrictions in relation to the initial ischemic episode and subsequent oxidative stress, nitric oxide depletion during the pericapillary clearance of oxyhemoglobin, vasogenic edema, leukocytosis, and astrocytic endfeet swelling are identified as potential sources of elevated CTH, and hence of metabolic derangement, after SAH. Irreversible changes in capillary morphology and function are predicted to contribute to long-term relative tissue hypoxia, inflammation, and neurodegeneration. We discuss diagnostic and therapeutic implications of these predictions.Journal of Cerebral Blood Flow & Metabolism advance online publication, 25 September 2013; doi:10.1038/jcbfm.2013.173.

Concepts: Blood, Blood vessel, Stroke, Traumatic brain injury, Ischemia, Reperfusion injury, Subarachnoid hemorrhage, Hypoxia