Discover the most talked about and latest scientific content & concepts.

Concept: Iron


Acidimicrobiaceae sp. A6 (ATCC, PTA-122488), a strain that has been previously reported to play a key role in the oxidation of ammonium (NH4+) under iron reducing conditions, has now been isolated from riparian wetland soils in New Jersey, USA. Incubations of this strain in a medium containing ferrihydrite as the ferric iron [Fe(III)] source, CO2 as the carbon source, under room temperature, and a pH of 4.5, resulted in 52% of NH4+ removal over a 20-day incubation period, while reducing Fe(III) in the expected stoichiometric ratio when NH4+ was oxidized to nitrite with Fe(III) as the electron acceptor. This study demonstrates that this new isolated strain is capable of oxidizing NH4+ while reducing iron under anaerobic conditions.

Concepts: Photosynthesis, Carbon dioxide, Iron, Redox, Cellular respiration, Nitrogen, Carbon, Electron acceptor


Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over time revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. These data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface environments.

Concepts: Carbon dioxide, Bacteria, Iron, Microbiology, Redox, Hydrogen sulfide, Electron acceptor, Geochemistry


The aim of the study was evaluation of metal ions (nickel and chromium) released from orthodontic appliances in cleft lip and palate patients and the usefulness of non-invasive matrices (saliva and hair).

Concepts: Iron, Hydrogen, Chemical element, Metal, Transition metal, Chromium, Nickel, Platinum group


For more than one century, hydrogen assisted degradation of metallic microstructures has been identified as origin for severe technical component failures but the mechanisms behind have not yet been completely understood so far. Any in-situ observation of hydrogen transport phenomena in microstructures will provide more details for further elucidation of these degradation mechanisms. A novel experiment is presented which is designed to elucidate the permeation behaviour of deuterium in a microstructure of duplex stainless steel (DSS). A hydrogen permeation cell within a TOF-SIMS instrument enables electrochemical charging with deuterium through the inner surface of the cell made from DSS. The outer surface of the DSS permeation cell exposed to the vacuum has been imaged by TOF-SIMS vs. increasing time of charging with subsequent chemometric treatment of image data. This in-situ experiment showed evidently that deuterium is permeating much faster through the ferrite phase than through the austenite phase. Moreover, a direct proof for deuterium enrichment at the austenite-ferrite interface has been found.

Concepts: Iron, Metallurgy, Steel, Austenite, Stainless steel, Nickel, Corrosion, Microstructure


Metals deposited into ecosystems are non-degradable and become one of the major toxic agents which accumulate in habitats. Thus, their concentration requires precise monitoring. To evaluate pollution around a chlor-alkali plant, a glass smelter, two power plants and a ceramic and porcelain factory, we selected terrestrial mosses with different life forms: the orthotropic and endohydric Polytrichum commune and plagiotropic and ectohydric Pleurozium schreberi. Metal concentrations were determined in both species growing together at sites situated at various distances approximately 0.75, 1.5, 3 and 6 km from polluters. MARS analysis evaluated different tendencies of both species for Cd, Co and Pb accumulation depending on the distance from the emitter. In P. schreberi, the concentration of these metals diminished relatively rapidly with an increasing distance from the emitter up to 3000 m and then stabilised. For P. commune, a steady decrease could be observed with increasing the distance up to 6000 m. PCCA ordination explained that both species from the vicinity of the chlor-alkali plant were correlated with the highest Co, Cr, Cu, Fe and Pb as well as Mn and Ni concentrations in their tissues. The mosses from sites closest to both power plants were correlated with the highest Cd and Zn concentrations. P. commune contained significantly higher Cd, Cr, Ni, Pb and Zn concentrations compared to P. schreberi. This may be caused by the lamellae found in the leaves of P. commune which increase the surface area of the possible aerial absorption of contaminants. Soil may also be an additional source of metals, and it affects the uptake in endohydric P. commune more than in ectohydric P. schreberi. However, the precise explanation of these relations needs further investigation.

Concepts: Iron, Plant, Metal, Copper, Pollution, Moss, Mosses, Polytrichum commune


Ferric citrate (FC) has demonstrated efficacy as a phosphate binder and reduces the requirements for erythropoiesis-stimulating agents (ESAs) and intravenous (IV) iron in dialysis patients. We developed a net budgetary impact model to evaluate FC vs. other phosphate binders from the vantage of a large dialysis provider. We used a Markov microsimulation model to simulate mutually referential longitudinal effects between serum phosphate and phosphate binder dose; categories of these defined health states. Health states probabilistically determined treatment attendance and utilization of ESA and IV iron. We derived model inputs from a retrospective analysis of incident phosphate binder users from a large dialysis organization (January 2011-June 2013) and incorporated treatment effects of FC from a phase III trial. The model was run over a 1-year time horizon. We considered fixed costs of providing dialysis; costs of administering ESA and IV iron; and payment rates for dialysis, ESAs, and IV iron. In the base-case model, FC had a net budgetary impact (savings) of +US$213,223/year per 100 patients treated vs. standard of care. One-way sensitivity analyses showed a net budgetary impact of up to +US$316,296/year per 100 patients treated when higher hemoglobin levels observed with FC translated into a 30% additional ESA dose reduction, and up to +US$223,281/year per 100 patients treated when effects on missed treatment rates were varied. Two-way sensitivity analyses in which acquisition costs for ESA and IV iron were varied showed a net budgetary impact of +US$104,840 to +US$213,223/year per 100 patients treated. FC as a first-line phosphate binder would likely yield substantive savings vs. standard of care under current reimbursement.

Concepts: Nephrology, Iron, Retrospective, Calcium carbonate, Das Model, Renal osteodystrophy, Phosphate binders, Hyperphosphatemia


We show in this report that traces of juices released from salad leaves as they became damaged can significantly enhance Salmonella enterica salad leaf colonisation. Salad juices in water increased Salmonella growth by 110% over the un-supplemented control, and in host-like serum based media by more than 2400-fold over controls. In serum based media salad juices induced growth of Salmonella via provision of Fe from transferrin, and siderophore production was found to be integral to the growth induction process. Other aspects relevant to salad leaf colonisation and retention were enhanced, such as motility and biofilm formation, which increased over controls by >220% and 250% respectively; direct attachment to salad leaves increased by >350% when a salad leaf juice was present. In terms of growth and biofilm formation the endogenous salad leaf microbiota was largely unresponsive to leaf juice, suggesting that Salmonella gains a marked advantage from fluids released from salad leaf damage. Salad leaf juices also enhanced pathogen attachment to the salad bag plastic. Over 5 days refrigeration (a typical storage time for bagged salad leaves) even traces of juice within the salad bag fluids increased Salmonella growth in water by up to 280-fold over control cultures, as well as enhancing salad bag colonisation, which could be an unappreciated factor in pathogen fresh produce retention. Collectively, this study shows that exposure to salad leaf juice may contribute to the persistence of Salmonella on salad leaves, and strongly emphasizes the importance of ensuring the microbiological safety of fresh produce.

Concepts: Bacteria, Iron, Microbiology, Salmonella enterica, Salmonella, Leaf, Lettuce, Leaf vegetable


A reduction in the particle size is expected to improve the properties and increase the application potential of high-entropy alloys. Therefore, in this study, a novel sol-gel autocombustion technique was first used to synthesize high-entropy alloys. The average grain size of the prepared nanocrystalline CoCrCuNiAl high-entropy alloys showed was 14 nm with an excellent and uniform dispersion, exhibiting a distinct magnetic behavior similar to the superparamagnetic behavior. We show that the metal nitrates first form (Co,Cu,Mg,Ni,Zn)O high-entropy oxides, and then in situ reduce to CoCrCuNiAl high-entropy alloys by the reducing gases, and the chelation between citric acid and the metal ions and the in situ chemical reactions are the dominant reaction mechanisms. We demonstrate that the sol-gel autocombustion process is an efficient way to synthesize solid solution alloys eluding the restriction of a high mixing entropy.

Concepts: Iron, Chemical reaction, Hydrogen, Chemistry, Nitrogen, Zinc, Solid, Solid solution


In this study, the anatomical and ultrastructural responses of Capsicum annuum to iron nanoparticles (Fe NPs) were determined. The results showed that the bio-effects of Fe NPs on plants could be positive or negative, depending on the additive concentrations. Low concentrations of Fe NPs were found to promote plant growth. Light and electron microscope analyses showed that the Fe NPs promoted plant growth by altering the leaf organization, and increasing the chloroplast number and grana stacking, as well as regulating the development of vascular bundles. Meanwhile, it was found that the Fe NPs could be absorbed in the roots, and then transported to the central cylinder in bio-available forms, where they were translocated and utilized by the leaves and stems. In contrast, high concentrations of Fe NPs appeared to be harmful to the plants, and the majority of Fe NPs were aggregated into cell walls and transported via the apoplastic pathway in the roots, which may potentially block the transfer of iron nutrients. Taken together, the aforementioned data showed that the rational use of Fe NPs could alleviate iron deficiency, and Fe NPs could be an ideal supply for Fe2+ions fertilizers in agriculture.

Concepts: Photosynthesis, Iron, Plant, Fern, Chlorophyll, Iron supplements, Capsicum annuum, Moss


There has been no evidence for the necessity of endoscopy in asymptomatic young men with iron deficiency anemia (IDA). To determine whether endoscopy should be recommended in asymptomatic young men with IDA, we compared the prevalence of gastrointestinal (GI) lesions between young men (< 50 years) with IDA and those without IDA.

Concepts: Hemoglobin, Iron, Hematology, Iron deficiency anemia, Transferrin, Human iron metabolism, Iron deficiency, Serum iron