Discover the most talked about and latest scientific content & concepts.

Concept: Ionizing radiation


The vast majority of all agents used to directly kill cancer cells (ionizing radiation, most chemotherapeutic agents and some targeted therapies) work through either directly or indirectly generating reactive oxygen species that block key steps in the cell cycle. As mesenchymal cancers evolve from their epithelial cell progenitors, they almost inevitably possess much-heightened amounts of antioxidants that effectively block otherwise highly effective oxidant therapies. Also key to better understanding is why and how the anti-diabetic drug metformin (the world’s most prescribed pharmaceutical product) preferentially kills oxidant-deficient mesenchymal p53(- -)cells. A much faster timetable should be adopted towards developing more new drugs effective against p53(- -) cancers.

Concepts: Antioxidant, Ionizing radiation, Leukemia, Radiation therapy, Oncology, Metastasis, Chemotherapy, Cancer


Background Somatic mutations have the potential to encode “non-self” immunogenic antigens. We hypothesized that tumors with a large number of somatic mutations due to mismatch-repair defects may be susceptible to immune checkpoint blockade. Methods We conducted a phase 2 study to evaluate the clinical activity of pembrolizumab, an anti-programmed death 1 immune checkpoint inhibitor, in 41 patients with progressive metastatic carcinoma with or without mismatch-repair deficiency. Pembrolizumab was administered intravenously at a dose of 10 mg per kilogram of body weight every 14 days in patients with mismatch repair-deficient colorectal cancers, patients with mismatch repair-proficient colorectal cancers, and patients with mismatch repair-deficient cancers that were not colorectal. The coprimary end points were the immune-related objective response rate and the 20-week immune-related progression-free survival rate. Results The immune-related objective response rate and immune-related progression-free survival rate were 40% (4 of 10 patients) and 78% (7 of 9 patients), respectively, for mismatch repair-deficient colorectal cancers and 0% (0 of 18 patients) and 11% (2 of 18 patients) for mismatch repair-proficient colorectal cancers. The median progression-free survival and overall survival were not reached in the cohort with mismatch repair-deficient colorectal cancer but were 2.2 and 5.0 months, respectively, in the cohort with mismatch repair-proficient colorectal cancer (hazard ratio for disease progression or death, 0.10 [P<0.001], and hazard ratio for death, 0.22 [P=0.05]). Patients with mismatch repair-deficient noncolorectal cancer had responses similar to those of patients with mismatch repair-deficient colorectal cancer (immune-related objective response rate, 71% [5 of 7 patients]; immune-related progression-free survival rate, 67% [4 of 6 patients]). Whole-exome sequencing revealed a mean of 1782 somatic mutations per tumor in mismatch repair-deficient tumors, as compared with 73 in mismatch repair-proficient tumors (P=0.007), and high somatic mutation loads were associated with prolonged progression-free survival (P=0.02). Conclusions This study showed that mismatch-repair status predicted clinical benefit of immune checkpoint blockade with pembrolizumab. (Funded by Johns Hopkins University and others; number, NCT01876511 .).

Concepts: Ionizing radiation, Metastasis, Neoplasm, Oncology, Colorectal cancer, Immune system, Mutation, Cancer



Bone loss caused by ionizing radiation is a potential health concern for radiotherapy patients, radiation workers and astronauts. In animal studies, exposure to ionizing radiation increases oxidative damage in skeletal tissues, and results in an imbalance in bone remodeling initiated by increased bone-resorbing osteoclasts. Therefore, we evaluated various candidate interventions with antioxidant or anti-inflammatory activities (antioxidant cocktail, dihydrolipoic acid, ibuprofen, dried plum) both for their ability to blunt the expression of resorption-related genes in marrow cells after irradiation with either gamma rays (photons, 2 Gy) or simulated space radiation (protons and heavy ions, 1 Gy) and to prevent bone loss. Dried plum was most effective in reducing the expression of genes related to bone resorption (Nfe2l2, Rankl, Mcp1, Opg, TNF-α) and also preventing later cancellous bone decrements caused by irradiation with either photons or heavy ions. Thus, dietary supplementation with DP may prevent the skeletal effects of radiation exposures either in space or on Earth.

Concepts: Skeletal system, Electron, Atom, Cancer, Bacteria, Osteoclast, Ionizing radiation, Bone


To evaluate the environmental contamination and radiation exposure dose rates due to artificial radionuclides in Kawauchi Village, Fukushima Prefecture, the restricted area within a 30-km radius from the Fukushima Dai-ichi Nuclear Power Plant (FNPP), the concentrations of artificial radionuclides in soil samples, tree needles, and mushrooms were analyzed by gamma spectrometry. Nine months have passed since samples were collected on December 19 and 20, 2011, 9 months after the FNPP accident, and the prevalent dose-forming artificial radionuclides from all samples were (134)Cs and (137)Cs. The estimated external effective doses from soil samples were 0.42-7.2 µSv/h (3.7-63.0 mSv/y) within the 20-km radius from FNPP and 0.0011-0.38 µSv/h (0.010-3.3 mSv/y) within the 20-30 km radius from FNPP. The present study revealed that current levels are sufficiently decreasing in Kawauchi Village, especially in areas within the 20- to 30-km radius from FNPP. Thus, residents may return their homes with long-term follow-up of the environmental monitoring and countermeasures such as decontamination and restrictions of the intake of foods for reducing unnecessary exposure. The case of Kawauchi Village will be the first model for the return to residents' homes after the FNPP accident.

Concepts: Radioactive decay, Nuclear power, Radioactive contamination, Chernobyl disaster, Prefectures of Japan, Nuclear physics, Fukushima Prefecture, Ionizing radiation


Radioactive isotopes originating from the damaged Fukushima nuclear reactor in Japan following the earthquake and tsunami in March 2011 were found in resident marine animals and in migratory Pacific bluefin tuna (PBFT). Publication of this information resulted in a worldwide response that caused public anxiety and concern, although PBFT captured off California in August 2011 contained activity concentrations below those from naturally occurring radionuclides. To link the radioactivity to possible health impairments, we calculated doses, attributable to the Fukushima-derived and the naturally occurring radionuclides, to both the marine biota and human fish consumers. We showed that doses in all cases were dominated by the naturally occurring alpha-emitter (210)Po and that Fukushima-derived doses were three to four orders of magnitude below (210)Po-derived doses. Doses to marine biota were about two orders of magnitude below the lowest benchmark protection level proposed for ecosystems (10 µGy⋅h(-1)). The additional dose from Fukushima radionuclides to humans consuming tainted PBFT in the United States was calculated to be 0.9 and 4.7 µSv for average consumers and subsistence fishermen, respectively. Such doses are comparable to, or less than, the dose all humans routinely obtain from naturally occurring radionuclides in many food items, medical treatments, air travel, or other background sources. Although uncertainties remain regarding the assessment of cancer risk at low doses of ionizing radiation to humans, the dose received from PBFT consumption by subsistence fishermen can be estimated to result in two additional fatal cancer cases per 10,000,000 similarly exposed people.

Concepts: Gamma ray, Radioactive contamination, Tuna, Radioactive decay, Radiation poisoning, Radioactivity, Radionuclide, Ionizing radiation


Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca(2+)-activated-K(+)-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca(2+) and eventually an activation of hIK channels.

Concepts: Electromagnetic spectrum, Cytoplasm, Cell nucleus, DNA, Cytosol, X-ray, Cancer, Ionizing radiation


The main aim of this article is to explain the apoptosis mechanisms of cancer cells specifically triggered by gold nanorods (GNRs).

Concepts: Apoptosis, Ionizing radiation, Cancer


The use of novel radiotherapy techniques is widely increasing, allowing clinicians to treat diseases that were previously difficult to treat with radiation therapy. Malignant pleural mesothelioma is a clear example of this clinical challenge. We describe our first experience with intensity-modulated radiotherapy technique which was used to treat a 73-year-old patient with multiple relapsing malignant pleural mesothelioma. Intensity-modulated radiation therapy has allowed to respect the QUANTEC (quantitative analyses of normal tissue effects in the clinic) dose constraints, patient has experienced a 14 months progression-free time, without relevant subacute or late lung toxicity.

Concepts: Radiobiology, Medical terms, Ionizing radiation, Mesothelioma, Radiation therapy, Medicine, Cancer