Discover the most talked about and latest scientific content & concepts.

Concept: Ionic liquids


Abundant lignocellulosic biomass could become a source of sugars and lignin, potential feedstocks for the now emergent bio-renewable economy. The production and conversion of sugars from biomass have been well-studied, but far less is known about the production of lignin that is amenable to valorization. Here we report the isolation of lignin generated from the hydrolysis of biomass dissolved in the ionic liquid 1-butyl-3-methylimidazolium chloride. We show that lignin can be isolated from the hydrolysate slurry by simple filtration or centrifugation, and that the ionic liquid can be recovered quantitatively by a straightforward wash with water. The isolated lignin is not only free from ionic liquid, but also lacks cellulosic residues and is substantially depolymerized, making it a promising feedstock for valorization by conversion into fuels and chemicals.

Concepts: Scientific method, Water, Ionic liquid, Cellulose, Maize, Social sciences, 1-Butyl-3-methylimidazolium hexafluorophosphate, Ionic liquids


The nanoscale interactions of room temperature ionic liquids (RTILs) at uncharged (graphene) and charged (muscovite mica) solid surfaces were evaluated with high resolution X-ray interface scattering and fully atomistic molecular dynamics simulations. At uncharged graphene surfaces, the imidazolium-based RTIL ([bmim(+)][Tf(2)N(-)]) exhibits a mixed cation/anion layering with a strong interfacial densification of the first RTIL layer. The first layer density observed via experiment is larger than that predicted by simulation and the apparent discrepancy can be understood with the inclusion of, dominantly, image charge and π-stacking interactions between the RTIL and the graphene sheet. In contrast, the RTIL structure adjacent to the charged mica surface exhibits an alternating cation-anion layering extending 3.5 nm into the bulk fluid. The associated charge density profile demonstrates a pronounced charge overscreening (i.e., excess first-layer counterions with respect to the adjacent surface charge), highlighting the critical role of charge-induced nanoscale correlations of the RTIL. These observations confirm key aspects of a predicted electric double layer structure from an analytical Landau-Ginzburg-type continuum theory incorporating ion correlation effects, and provide a new baseline for understanding the fundamental nanoscale response of RTILs at charged interfaces.

Concepts: Electric charge, Density, Liquid, Ionic liquid, Ions, Ethylammonium nitrate, Ionic liquids, MDynaMix


The Belousov-Zhabotinsky (BZ) reaction using hydrated protic ionic liquid (PIL) as reaction medium is reported. For the first time it is found that the BZ oscillation reaction occurred in certain hydrated PILs without adding strong acid such as HNO(3) (see red oscillation profile). Furthermore, a stable and long-lasting self-oscillation can be realized when the component concentrations of the BZ medium are optimized.

Concepts: Acid, Ionic liquid, Ionic liquids, Strong acid


In the present study, a rapid and repeatable microemulsion electrokinetic chromatography (MEEKC) method was developed for the simultaneous determination of three isomers (α-, β- and γ-asarone) in Acorus tatarinowii by using ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF(6)) as oil phase. Experimental parameters including the microemulsion compositions (concentrations of surfactant, co-surfactant and oil phase), pH, concentration of borate buffer, capillary temperature and voltage were intensively investigated. Finally, the main compounds in the methanol extract of A. tatarinowii were well separated within 11min using a running buffer composed of 40mmol/L sodium dodecyl sulfonate (SDS), 2.0mol/L n-propanol, 8mmol/L [BMIM]PF(6) in 10mmol/L borate buffer of pH 9.5. The developed method was applied to determine the contents of α-, β- and γ-asarone in A. tatarinowii from five different producing areas in China (Anhui, Hebei, Sichuan, Zhejiang and Chongqing). The results indicated that the contents of three asarones are quite different in the investigated A. tatarinowii samples. On the other hand, the MEEKC with ionic liquid as oil phase should be a promising method for the analysis of volatile components especially isomers in medicinal herbs.

Concepts: Liquid, Yangtze River, Emulsion, Ionic liquid, Borax, 1-Butyl-3-methylimidazolium hexafluorophosphate, Hexafluorophosphate, Ionic liquids


In this manuscript, we have characterized two different micellar aggregates containing all nonvolatile components. We have shown (i) the effect of ethylammonium nitrate (EAN) addition on the properties of micellar solution of Triton X-100 in 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF(6)) and (ii) the effect of bmimPF(6) addition on the properties of micellar solution of Triton X-100 in EAN. To investigate the effect, we have used (1)H NMR, pulsed-field gradient spin-echo NMR (PFGSE NMR), and methyl orange (MO) and coumarin 153 (C-153) as absorption and emission probes, respectively. The penetration of added EAN inside the Triton X-100/bmimPF(6) micellar aggregates is indicated by (i) red shift in both the absorption spectra of MO and emission spectra of C-153 and (ii) downfield shift of proton signals of ethylene oxide units in Triton X-100. On the other hand, (1)H NMR and PFGSE NMR indicates the penetration of added bmimPF(6) inside the Triton X-100/EAN micellar aggregates. However, the constancy of both the absorption spectra of MO and emission spectra of C-153 indicates that the microenvironment around the probe molecules remains unaffected. We have also investigated the effect of micelle formation and the effect of penetration of ionic liquids (ILs) in micellar aggregates, on the solvation dynamics of C-153. The solvent relaxation around C-153 gets retarded on going from neat ILs to the micellar solution of Triton X-100 in ILs. In addition to this, we have also observed that with the addition of EAN in Triton X-100/bmimPF(6) micellar aggregates the solvation dynamics becomes faster, whereas with the addition of bmimPF(6) in Triton X-100/EAN micellar aggregates we did not observe any notable change in solvation dynamics. This observation further supports the conclusions drawn from UV-visible and NMR studies.

Concepts: Solvent, Ionic liquid, Absorption spectroscopy, 1-Butyl-3-methylimidazolium hexafluorophosphate, Ethylammonium nitrate, Hexafluorophosphate, Ionic liquids, Paul Walden


Simple ionic liquids have long been held to be designer solvents, based upon the ability to independently vary their cations and anions. The formation of mixtures of ionic liquids increases this synthetic flexibility. We review the available literature of these ionic liquid mixtures to identify how their properties change and the possibility for their application.

Concepts: Ion, Solid, Solvent, Ionic liquid, Ions, Deep eutectic solvent, Ionic liquids


ZnO particles were synthesized by hydrothermal route at 95 °C, with different ethylammonium nitrate (EAN) : water volume ratio (0.01 to 1) in reaction media. Morphology of ZnO particles changed from initial cylindrical to intermediate spindle and finally to spherical with increasing concentration of EAN in reaction media whereas pH of aliquots remained within range of 7-7.5. Aggregates of EAN bind to Zn(2+) enriched both terminal planes as well as to Zn(2+) and O(2-) enriched side planes of basis units which finally resulted to formation of spherical ZnO superstructures. Favorable H-bond and electrostatic interaction helped to bind EAN aggregates with surfaces of ZnO crystals. It was found that the spherical ZnO superstructures showed novel photoluminescent property and enhanced photocatalytic activity compared to that of the commercially available ZnO.

Concepts: Crystal, Volume, Ionic liquid, Differential geometry, Surfaces, Ethylammonium nitrate, Ionic liquids, Paul Walden


BACKGROUND: In the present study, three ionic liquids, namely 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc), and 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIM]DEP), were used to partially dissolve rice husk, after which the cellulose were regenerated by the addition of water. The aim of the investigation is to examine the implications of the ionic liquid pretreatments on rice husk composition and structure. RESULTS: From the attenuated total reflectance Fourier transform-infrared (ATR FT-IR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) results, the regenerated cellulose were more amorphous, less crystalline, and possessed higher structural disruption compared with untreated rice husk. The major component of regenerated cellulose from [BMIM]Cl and [EMIM]DEP pretreatments was cellulose-rich material, while cellulose regenerated from [EMIM]OAc was a matrix of cellulose and lignin. Cellulose regenerated from ionic pretreatments could be saccharified via enzymatic hydrolysis, and resulted in relatively high reducing sugars yields, whereas enzymatic hydrolysis of untreated rice husk did not yield reducing sugars. Rice husk residues generated from the ionic liquid pretreatments had similar chemical composition and amorphousity to that of untreated rice husk, but with varying extent of surface disruption and swelling. CONCLUSIONS: The structural architecture of the regenerated cellulose and rice husk residues showed that they could be used for subsequent fermentation or derivation of cellulosic compounds. Therefore, ionic liquid pretreatment is an alternative in the pretreatment of lignocellulosic biomass in addition to the conventional chemical pretreatments.

Concepts: Starch, Scientific techniques, Ionic liquid, Cellulose, Scanning electron microscope, Cellulosic ethanol, 1-Butyl-3-methylimidazolium hexafluorophosphate, Ionic liquids


The current work develops a new green methodology for the separation/preconcentration of cadmium ions (Cd(2+)) using room temperature ionic liquid-dispersive liquid phase microextraction (RTIL-DLME) prior to analysis by flame atomic absorption spectrometry with microsample introduction system. Room temperature ionic liquids (RTIL) are considered “Green Solvents” for their thermally stable and non-volatile properties, here 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6] was used as an extractant. The preconcentration of Cd(2+) in different waters and acid digested scalp hair samples were complexed with 1-(2-pyridylazo)-2-naphthol and extracted into the fine drops of RTILs. Some significant factors influencing the extraction efficiency of Cd(2+) and its subsequent determination, including pH, amount of ligand, volume of RTIL, dispersant solvent, sample volume, temperature, and incubation time were investigated in detail. The limit of detection and the enhancement factor under the optimal conditions were 0.05 μg/L and 50, respectively. The relative standard deviation of 100 μg/L Cd(2+) was 4.3 %. The validity of the proposed method was checked by determining Cd(2+) in certified reference material (TM-25.3 fortified water). The sufficient recovery (>98 %) of Cd(2+) with the certified value. The mean concentrations of Cd in lake water 13.2, waste water 15.7 and hair sample 16.8 μg/L, respectively and the developed method was applied satisfactorily to the preconcentration and determination of Cd(2+) in real samples.

Concepts: Density, Water, Analytical chemistry, Solvent, Liquid, Ionic liquid, Atomic absorption spectroscopy, Ionic liquids


An extracellular cellulase produced by marine bacterium Pseudoalteromonas sp. was studied for its activity and stability in six different ionic liquids (ILs) over a wide range of concentrations (1-20% v/v) and compared with aqueous medium as control. Enzyme showed its optimal activity at 45°C and at pH 5 in control. Although the activity varied with the type of IL and its concentration used, the activity measured at 5% (v/v) was maximum with [EMIM]Br followed by [EMIM]Ac, [BMIM]Cl, [CMIM][CHSO], [BMIM][OTF] and [BMPL][OTF] with 115%, 104.7%, 102.2%, 98.33%, 93.84% and 92.67%, respectively, and >80% activity at 15% (v/v) in all ILs. The enzyme stability at 5% (v/v) IL concentration for 36h was superior to commercial cellulase. The cellulase activity enhanced by 1.35- to 1.72-fold over control when 5% (v/v) IL based reaction medium with algal biomass was used and thus showed potentials for saccharification of biomass in a single step process.

Concepts: Algae, Photosynthesis, Concentration, Chemical equilibrium, PH, Ionic liquid, Brown algae, Ionic liquids