Discover the most talked about and latest scientific content & concepts.

Concept: Introduced species


While hybridization of an invasive species with a native species is a common occurrence, hybridization between two invasive species is rare. Formosan subterranean termites (Coptotermes formosanus) and Asian subterranean termites (C. gestroi) are both ecologically successful and are the two most economically important termite pests in the world. Both species have spread throughout many areas of the world due to human activity; however, their distributions overlap in only three narrow areas because of distinct ecological requirements. In south Florida, where C. formosanus and C. gestroi are both invasive, the dispersal flight seasons of both species overlapped for the first time on record in 2013 and 2014. Pairings of heterospecific individuals were readily observed in the field and C. gestroi males preferentially engaged in mating behavior with C. formosanus females rather than females from their own species. In the laboratory, heterospecific and conspecific pairings had an equal colony establishment rate, but heterospecific incipient colonies had twice the growth rate of conspecific incipient colonies, suggesting a potential case of hybrid vigor. As all pre-zygotic barriers were lifted between the two species in the field, the apparent absence of post-zygotic barriers in the laboratory raises the possibility for introgressive hybridization in south Florida. While laboratory observations remain to be confirmed in the field, and the alate hybrid fertility is currently unknown, our results raise a tangible concern about the hybridization of two major destructive pest species. Such hybridization would likely be associated with a new economic impact.

Concepts: Human, Ecology, Genetic pollution, Charles Darwin, Introduced species, Termite, Termites, Formosan subterranean termite


Whether introduced species invasions pose a major threat to biodiversity is hotly debated. Much of this debate is fueled by recent findings that competition from introduced organisms has driven remarkably few plant species to extinction. Instead, native plant species in invaded ecosystems are often found in refugia: patchy, marginal habitats unsuitable to their nonnative competitors. However, whether the colonization and extinction dynamics of these refugia allow long-term native persistence is uncertain. Of particular concern is the possibility that invasive plants may induce an extinction debt in the native flora, where persistence over the short term masks deterministic extinction trajectories. We examined how invader impacts on landscape structure influence native plant persistence by combining recently developed quantitative techniques for evaluating metapopulation persistence with field measurements of an invaded plant community. We found that European grass invasion of an edaphically heterogeneous California landscape has greatly decreased the likelihood of the persistence of native metapopulations. It does so via two main pathways: (i) decreasing the size of native refugia, which reduces seed production and increases local extinction, and (ii) eroding the dispersal permeability of the matrix between refugia, which reduces their connectivity. Even when native plant extinction is the deterministic outcome of invasion, the time to extinction can be on the order of hundreds of years. We conclude that the relatively short time since invasion in many parts of the world is insufficient to observe the full impact of plant invasions on native biodiversity.

Concepts: Plant, Ecology, Term, Extinction, Invasive species, Introduced species, Biogeography, Habitat fragmentation


Harmonia axyridis has been introduced as a biological control agent in Europe and the USA. Since its introduction, it has established and spread, and it is now regarded as an invasive alien species. It has been suggested that intraguild predation is especially important for the invasion success of H. axyridis. The aim of this study was to compare the intraguild predation behaviour of three ladybird species (Coccinella septempunctata, Adalia bipunctata, and H. axyridis). Predation behaviour was investigated in semi-field experiments on small lime trees (Tilia platyphyllos). Two fourth-instar larvae placed on a tree rarely made contact during 3-hour observations. When placed together on a single leaf in 23%-43% of the observations at least one contact was made. Of those contacts 0%-27% resulted in an attack. Harmonia axyridis attacked mostly heterospecifics, while A. bipunctata and C. septempunctata attacked heterospecifics as often as conspecifics. In comparison with A. bipunctata and C. septempunctata, H. axyridis was the most successful intraguild predator as it won 86% and 44% of heterospecific battles against A. bipunctata and C. septempunctata respectively, whilst A. bipunctata won none of the heterospecific battles and C. septempunctata won only the heterospecific battles against A. bipunctata. Coccinella septempunctata dropped from a leaf earlier and more often than the other two species but was in some cases able to return to the tree, especially under cloudy conditions. The frequency with which a species dropped did not depend on the species the larva was paired with. The results of these semi-field experiments confirm that H. axyridis is a strong intraguild predator as a consequence of its aggressiveness and good defence against predation from heterospecific species. The fact that H. axyridis is such a strong intraguild predator helps to explain its successful establishment as invasive alien species in Europe and the USA.

Concepts: Biological pest control, Invasive species, Introduced species, Coccinellidae, Harmonia axyridis, Tilia, Coccinella septempunctata, Biological pest control agents


The calcareous sponge Paraleucilla magna, originally observed along the Brazilian coast (Atlantic Ocean), is the only allochthonous invasive species of Porifera reported in the Mediterranean Sea. A 1-year investigation of the population dynamics and life-cycle of this exotic species in the Mar Piccolo di Taranto (southern Italy, central Mediterranean Sea) has provided a good opportunity to test how environmental variations can influence its life-cycle and to ascertain what strategy can be adopted to successfully colonize a new environment. In the Mar Piccolo di Taranto, P. magna exhibits marked temporal changes in biomass. The studied specimens reproduce almost all year round, showing a seasonal pattern that peaks during warm months. This prolonged sexual activity allows P. magna to continuously produce young specimens, with repeated recruitment events taking place throughout the year, thus offsetting the seasonal mortality of adult specimens. This r-strategy enables the non-indigenous sponge to achieve a high degree of maintenance over relatively long periods (ten years at least).

Concepts: Mediterranean Sea, Atlantic Ocean, Europe, Ocean, Italy, Invasive species, Marine debris, Introduced species


Alien species are a major component of human-induced environmental change. Variation in the numbers of alien species found in different areas is likely to depend on a combination of anthropogenic and environmental factors, with anthropogenic factors affecting the number of species introduced to new locations, and when, and environmental factors influencing how many species are able to persist there. However, global spatial and temporal variation in the drivers of alien introduction and species richness remain poorly understood. Here, we analyse an extensive new database of alien birds to explore what determines the global distribution of alien species richness for an entire taxonomic class. We demonstrate that the locations of origin and introduction of alien birds, and their identities, were initially driven largely by European (mainly British) colonialism. However, recent introductions are a wider phenomenon, involving more species and countries, and driven in part by increasing economic activity. We find that, globally, alien bird species richness is currently highest at midlatitudes and is strongly determined by anthropogenic effects, most notably the number of species introduced (i.e., “colonisation pressure”). Nevertheless, environmental drivers are also important, with native and alien species richness being strongly and consistently positively associated. Our results demonstrate that colonisation pressure is key to understanding alien species richness, show that areas of high native species richness are not resistant to colonisation by alien species at the global scale, and emphasise the likely ongoing threats to global environments from introductions of species.

Concepts: Environment, Bird, Introduction, Globalization, Invasive species, Introduced species, European Starling, Indigenous


Freshwater fishes are highly vulnerable to human-caused climate change. Because quantitative data on status and trends are unavailable for most fish species, a systematic assessment approach that incorporates expert knowledge was developed to determine status and future vulnerability to climate change of freshwater fishes in California, USA. The method uses expert knowledge, supported by literature reviews of status and biology of the fishes, to score ten metrics for both (1) current status of each species (baseline vulnerability to extinction) and (2) likely future impacts of climate change (vulnerability to extinction). Baseline and climate change vulnerability scores were derived for 121 native and 43 alien fish species. The two scores were highly correlated and were concordant among different scorers. Native species had both greater baseline and greater climate change vulnerability than did alien species. Fifty percent of California’s native fish fauna was assessed as having critical or high baseline vulnerability to extinction whereas all alien species were classified as being less or least vulnerable. For vulnerability to climate change, 82% of native species were classified as highly vulnerable, compared with only 19% for aliens. Predicted climate change effects on freshwater environments will dramatically change the fish fauna of California. Most native fishes will suffer population declines and become more restricted in their distributions; some will likely be driven to extinction. Fishes requiring cold water (<22°C) are particularly likely to go extinct. In contrast, most alien fishes will thrive, with some species increasing in abundance and range. However, a few alien species will likewise be negatively affected through loss of aquatic habitats during severe droughts and physiologically stressful conditions present in most waterways during summer. Our method has high utility for predicting vulnerability to climate change of diverse fish species. It should be useful for setting conservation priorities in many different regions.

Concepts: Conservation biology, Animal, Future, Endangered species, Freshwater fish, Invasive species, Introduced species, Biogeography


Invasive species that proliferate after colonizing new habitats have a negative environmental and economic impact. The reason why some species become successful invaders, whereas others, even closely related species, remain noninvasive is often unclear. The harlequin ladybird Harmonia axyridis, introduced for biological pest control, has become an invader that is outcompeting indigenous ladybird species in many countries. Here, we show that Harmonia carries abundant spores of obligate parasitic microsporidia closely related to Nosema thompsoni. These microsporidia, while not harming the carrier Harmonia, are lethal pathogens for the native ladybird Coccinella septempunctata. We propose that intraguild predation, representing a major selective force among competing ladybird species, causes the infection and ultimate death of native ladybirds when they feed on microsporidia-contaminated Harmonia eggs or larvae.

Concepts: Ecology, Invasive species, Introduced species, Coccinellidae, Harmonia axyridis, Coccinella septempunctata, Biological pest control agents, Coccinella


SUMMARY Parasites are known to affect the predatory behaviour or diet of their hosts. In relation to biological invasions, parasites may significantly influence the invasiveness of the host population and/or mediate the relationships between the invader and the invaded community. Dikerogammarus villosus, a recently introduced species, has had a major impact in European rivers. Notably, its high position in trophic web and high predatory behaviour, have both facilitated its invasive success, and affected other macroinvertebrate taxa in colonized habitats. The intracellular parasite Cucumispora dikerogammari, specific to D. villosus, has successfully dispersed together with this amphipod. Data presented here have shown that D. villosus infected by this parasite have a reduced predatory behaviour compared with healthy individuals, and are much more active suggesting that the co-invasive parasite may diminish the predatory pressure of D. villosus on newly colonized communities.

Concepts: Species, Fungus, Ecology, Crustacean, Invasive species, Introduced species, Malacostraca, Amphipoda


The growing economic and ecological damage associated with biological invasions, which will likely be exacerbated by climate change, necessitates improved projections of invasive spread. Generally, potential changes in species distribution are investigated using climate envelope models; however, the reliability of such models has been questioned and they are not suitable for use at local scales. At this scale, mechanistic models are more appropriate. This paper discusses some key requirements for mechanistic models and utilises a newly developed model (PSS[gt]) that incorporates the influence of habitat type and related features (e.g., roads and rivers), as well as demographic processes and propagule dispersal dynamics, to model climate induced changes in the distribution of an invasive plant (Gunnera tinctoria) at a local scale. A new methodology is introduced, dynamic baseline benchmarking, which distinguishes climate-induced alterations in species distributions from other potential drivers of change. Using this approach, it was concluded that climate change, based on IPCC and C4i projections, has the potential to increase the spread-rate and intensity of G. tinctoria invasions. Increases in the number of individuals were primarily due to intensification of invasion in areas already invaded or in areas projected to be invaded in the dynamic baseline scenario. Temperature had the largest influence on changes in plant distributions. Water availability also had a large influence and introduced the most uncertainty in the projections. Additionally, due to the difficulties of parameterising models such as this, the process has been streamlined by utilising methods for estimating unknown variables and selecting only essential parameters.

Concepts: Ecology, Ecosystem, Extinction, Invasive species, Invasion, Introduced species, Species distribution, Invasions


Hybridization between invasive and native species, a significant threat to worldwide biodiversity, is predicted to increase due to climate-induced expansions of invasive species. Long-term research and monitoring are crucial for understanding the ecological and evolutionary processes that modulate the effects of invasive species. Using a large, multidecade genetics dataset (N = 582 sites, 12,878 individuals) with high-resolution climate predictions and extensive stocking records, we evaluate the spatiotemporal dynamics of hybridization between native cutthroat trout and invasive rainbow trout, the world’s most widely introduced invasive fish, across the Northern Rocky Mountains of the United States. Historical effects of stocking and contemporary patterns of climatic variation were strongly related to the spread of hybridization across space and time. The probability of occurrence, extent of, and temporal changes in hybridization increased at sites in close proximity to historical stocking locations with greater rainbow trout propagule pressure, warmer water temperatures, and lower spring precipitation. Although locations with warmer water temperatures were more prone to hybridization, cold sites were not protected from invasion; 58% of hybridized sites had cold mean summer water temperatures (<11°C). Despite cessation of stocking over 40 years ago, hybridization increased over time at half (50%) of the locations with long-term data, the vast majority of which (74%) were initially nonhybridized, emphasizing the chronic, negative impacts of human-mediated hybridization. These results show that effects of climate change on biodiversity must be analyzed in the context of historical human impacts that set ecological and evolutionary trajectories.

Concepts: Evolution, Ecology, Climate, Ecosystem, Climate change, Invasive species, Cutthroat trout, Introduced species