SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: International Rhino Foundation

173

White rhinoceros (rhinos) is a keystone conservation species and also provides revenue for protection agencies. Restoring or mimicking the outcomes of impeded ecological processes allows reconciliation of biodiversity and financial objectives. We evaluate the consequences of white rhino management removal, and in recent times, poaching, on population persistence, regional conservation outcomes and opportunities for revenue generation. In Kruger National Park, white rhinos increased from 1998 to 2008. Since then the population may vary non-directionally. In 2010, we estimated 10,621 (95% CI: 8,767-12,682) white rhinos using three different population estimation methods. The desired management effect of a varying population was detectable after 2008. Age and sex structures in sink areas (focal rhino capture areas) were different from elsewhere. This comes from relatively more sub-adults being removed by managers than what the standing age distribution defined. Poachers in turn focused on more adults in 2011. Although the effect of poaching was not detectable at the population level given the confidence intervals of estimates, managers accommodated expected poaching annually and adapted management removals. The present poaching trend predicts that 432 white rhinos may be poached in Kruger during 2012. The white rhino management model mimicking outcomes of impeded ecological processes predicts 397 rhino management removals are required. At present poachers may be doing “management removals,” but conservationists have no opportunity left to contribute to regional rhino conservation strategies or generate revenue through white rhino sales. In addition, continued trends in poaching predict detectable white rhino declines in Kruger National Park by 2016. Our results suggest that conservationists need innovative approaches that reduce financial incentives to curb the threats that poaching poses to several conservation values of natural resources such as white rhinos.

Concepts: Elephant, Terry Gerin, Northern White Rhinoceros, International Rhino Foundation, Ecology, Black Rhinoceros, White Rhinoceros, Rhinoceros

26

White rhinoceros ejaculates (n=9) collected by electroejaculation from four males were shipped (10°C, 12h) to develop procedures for the production of chilled and frozen-thawed sex-sorted spermatozoa of adequate quality for artificial insemination (AI). Of all electroejaculate fractions, 39.7% (31/78) exhibited high quality post-collection (≥70% total motility and membrane integrity) and of those, 54.8% (17/31) presented reduced in vitro quality after transport and were retrospectively determined to exhibit urine-contamination (≥21.0μg creatinine/ml). Of fractions analyzed for creatinine concentration, 69% (44/64) were classified as urine-contaminated. For high quality non-contaminated fractions, in vitro parameters (motility, velocity, membrane, acrosome and DNA integrity) of chilled non-sorted and sorted spermatozoa were well-maintained at 5°C up to 54h post-collection, whereby >70% of post-transport (non-sorted) or post-sort (sorted) values were retained. By 54h post-collection, some motility parameters were higher (P<0.05) for non-sorted spermatozoa (total motility, rapid velocity, average path velocity) whereas all remaining motion parameters as well as membrane, acrosome and DNA integrity were similar between sperm types. In comparison with a straw method, directional freezing resulted in enhanced (P<0.05) motility and velocity of non-sorted and sorted spermatozoa, with comparable overall post-thaw quality between sperm types. High purity enrichment of X-bearing (89±6%) or Y-bearing (86±3%) spermatozoa was achieved using moderate sorting rates (2540±498X-spermatozoa/s; 1800±557Y-spermatozoa/s). Collective in vitro characteristics of sorted-chilled or sorted-frozen-thawed spermatozoa derived from high quality electroejaculates indicate acceptable fertility potential for use in AI.

Concepts: Spermatozoon, Ceratotherium neumayri, Southern White Rhinoceros, Northern White Rhinoceros, International Rhino Foundation, Black Rhinoceros, Rhinoceros, White Rhinoceros

16

Reproductive tract tumours, specifically leiomyoma, are commonly found in female rhinoceroses. Similar to humans, tumour growth in rhinoceroses is thought to be sex hormone dependent. Tumours can form and expand from the onset of ovarian activity at puberty until the cessation of sex-steroid influences at senescence. Extensive tumour growth results in infertility. The aim of this study was to down regulate reproductive function of tumour-diseased and infertile females to stop further tumour growth using a Gonadotropin releasing factor (GnRF) vaccine. Four infertile southern white (Ceratotherium simum simum) and three Greater one-horned rhinoceroses (rhinoceros unicornis) with active ovaries and 2.7 ± 0.9 and 14.0 ± 1.5 reproductive tract tumours respectively were vaccinated against GnRF (Improvac®, Zoetis, Germany) at 0, 4 and 16 weeks and re-boostered every 6-8 months thereafter. After GnRF vaccination ovarian and luteal activity was suppressed in all treated females. Three months after vaccination the size of the ovaries, the number of follicles and the size of the largest follicle were significantly reduced (P<0.03). Reproductive tract tumours decreased significantly in diameter (Greater-one horned rhino: P<0.0001; white rhino: P<0.01), presumably as a result of reduced sex-steroid influence. The calculated tumour volumes were reduced by 50.8 ± 10.9% in Greater one-horned and 48.6 ± 12.9% in white rhinoceroses. In conclusion, GnRF vaccine effectively down regulated reproductive function and decreased the size of reproductive tract tumours in female rhinoceros. Our work is the first to use down regulation of reproductive function as a symptomatic treatment against benign reproductive tumour disease in a wildlife species. Nonetheless, full reversibility and rhinoceros fertility following GnRF vaccination warrants further evaluation.

Concepts: Reproductive system, Indian Rhinoceros, Northern White Rhinoceros, International Rhino Foundation, Rhinoceroses, Black Rhinoceros, White Rhinoceros, Rhinoceros

13

Black and white rhinoceros (Diceros bicornis and Ceratotherium simum) are iconic African species that are classified by the International Union for the Conservation of Nature (IUCN) as Critically Endangered and Near Threatened (http://www.iucnredlist.org/), respectively [1]. At the end of the 19th century, Southern white rhinoceros (Ceratotherium simum simum) numbers had declined to fewer than 50 animals in the Hluhluwe-iMfolozi region of the KwaZulu-Natal (KZN) province of South Africa, mainly due to uncontrolled hunting [2,3]. Efforts by the Natal Parks Board facilitated an increase in population to over 20,000 in 2015 through aggressive conservation management [2]. Black rhinoceros (Diceros bicornis) populations declined from several hundred thousand in the early 19th century to ∼65,000 in 1970 and to ∼2,400 by 1995 [1] with subsequent genetic reduction, also due to hunting, land clearances and later poaching [4]. In South Africa, rhinoceros poaching incidents have increased from 13 in 2007 to 1,215 in 2014 [1]. This has occurred despite strict trade bans on rhinoceros products and strict enforcement in recent years.

Concepts: Rhinoceroses, International Rhino Foundation, Rhinoceros, Black Rhinoceros, White Rhinoceros

10

The onslaught on the World’s rhinoceroses continues despite numerous initiatives aimed at curbing it. When losses due to poaching exceed birth rates, declining rhino populations result. We used previously published estimates and growth rates for black rhinos (2008) and white rhinos (2010) together with known poaching trends at the time to predict population sizes and poaching rates in Kruger National Park, South Africa for 2013. Kruger is a stronghold for the south-eastern black rhino and southern white rhino. Counting rhinos on 878 blocks 3x3 km in size using helicopters, estimating availability bias and collating observer and detectability biases allowed estimates using the Jolly’s estimator. The exponential escalation in number of rhinos poached per day appears to have slowed. The black rhino estimate of 414 individuals (95% confidence interval: 343-487) was lower than the predicted 835 individuals (95% CI: 754-956). The white rhino estimate of 8,968 individuals (95% CI: 8,394-9,564) overlapped with the predicted 9,417 individuals (95% CI: 7,698-11,183). Density- and rainfall-dependent responses in birth- and death rates of white rhinos provide opportunities to offset anticipated poaching effects through removals of rhinos from high density areas to increase birth and survival rates. Biological management of rhinos, however, need complimentary management of the poaching threat as present poaching trends predict detectable declines in white rhino abundances by 2018. Strategic responses such as anti-poaching that protect supply from illegal harvesting, reducing demand, and increasing supply commonly require crime network disruption as a first step complimented by providing options for alternative economies in areas abutting protected areas.

Concepts: International Rhino Foundation, Estimator, South Africa, Demography, Population, White Rhinoceros, Black Rhinoceros, Rhinoceros

7

Between 1990 and 2007, 15 southern white (Ceratotherium simum simum) and black (Diceros bicornis) rhinoceroses on average were killed illegally every year in South Africa. Since 2007 illegal killing of southern white rhinoceros for their horn has escalated to >950 individuals/year in 2013. We conducted an ecological-economic analysis to determine whether a legal trade in southern white rhinoceros horn could facilitate rhinoceros protection. Generalized linear models were used to examine the socioeconomic drivers of poaching, based on data collected from 1990 to 2013, and to project the total number of rhinoceroses likely to be illegally killed from 2014 to 2023. Rhinoceros population dynamics were then modeled under 8 different policy scenarios that could be implemented to control poaching. We also estimated the economic costs and benefits of each scenario under enhanced enforcement only and a legal trade in rhinoceros horn and used a decision support framework to rank the scenarios with the objective of maintaining the rhinoceros population above its current size while generating profit for local stakeholders. The southern white rhinoceros population was predicted to go extinct in the wild <20 years under present management. The optimal scenario to maintain the rhinoceros population above its current size was to provide a medium increase in antipoaching effort and to increase the monetary fine on conviction. Without legalizing the trade, implementing such a scenario would require covering costs equal to approximately $147,000,000/year. With a legal trade in rhinoceros horn, the conservation enterprise could potentially make a profit of $717,000,000/year. We believe the 35-year-old ban on rhinoceros horn products should not be lifted unless the money generated from trade is reinvested in improved protection of the rhinoceros population. Because current protection efforts seem to be failing, it is time to evaluate, discuss, and test alternatives to the present policy.

Concepts: Southern White Rhinoceros, Northern White Rhinoceros, Rhinoceroses, International Rhino Foundation, Black Rhinoceros, Rhinoceros, White Rhinoceros

1

The Kanapoi collection of Rhinocerotidae, first studied by Hooijer and Patterson (1972), now consists of 25 specimens and substantial reinterpretation of their affinities is made here. Kanapoi post-dates the extinction of Brachypotherium and the whole collection belongs to the Dicerotini. It is important because it includes the type-specimen of Diceros praecox, a species that remains poorly known, but looks slightly larger and more primitive than the modern ‘black’ rhino, Diceros bicornis. A second species is probably ancestral to the modern ‘white’ rhino, Ceratotherium simum; it looks identical to the Pleistocene North African Ceratotherium mauritanicum, of which Ceratotherium efficax is probably a synonym. The evolution of the Dicerotini in Africa can be regarded as an increasing divergence in diet and related morphofunctional adaptations in the two lineages. The co-occurrence at Kanapoi of both Diceros and Ceratotherium, with distinct dietary preferences, suggests some habitat heterogeneity, although the low sample size prevents robust paleoecological conclusions. The Equidae are also rare and consist mostly of isolated teeth. I take the most parsimonious option of tentatively including all of them in a single species, whose identification is left open. Dental features of eastern African Pliocene to Pleistocene hipparions may reflect increasing adaptation to grazing.

Concepts: Rhinoceroses, Odd-toed ungulate, Horse, International Rhino Foundation, Africa, White Rhinoceros, Black Rhinoceros, Rhinoceros

1

Tuberculosis caused by Mycobacterium bovis is endemic in the African buffalo (Syncerus caffer) population in the Kruger National Park and other conservation areas in South Africa. The disease has been diagnosed in a total of 21 free ranging or semi-free ranging wildlife species in the country with highly variable presentations in terms of clinical signs as well as severity and distribution of tuberculous lesions. Most species are spillover or dead-end hosts without significant role in the epidemiology of the disease. White rhinoceroses (Ceratotherium simum) are translocated from the Kruger National Park in substantial numbers every year and a clear understanding of their risk to manifest overt tuberculosis disease and to serve as source of infection to other species is required. We report the findings of experimental infection of three white rhinoceroses with a moderately low dose of a virulent field isolate of Mycobacterium bovis. None of the animals developed clinical signs or disseminated disease. The susceptibility of the white rhinoceros to bovine tuberculosis was confirmed by successful experimental infection based on the ante mortem isolation of M. bovis from the respiratory tract of one rhinoceros, the presence of acid-fast organisms and necrotizing granulomatous lesions in the tracheobronchial lymph nodes and the detection of M. bovis genetic material by PCR in the lungs of two animals.

Concepts: International Rhino Foundation, Black Rhinoceros, Mycobacterium, Infectious disease, Rhinoceros, Mycobacterium bovis, White Rhinoceros, Tuberculosis

1

Global populations of rhinoceros have declined alarmingly, from about 500,000 at the beginning of the 20(th) century to 29,000 in 2016, largely due to an escalation of poaching for rhinoceros horn (Traffic 2016; Biggs et al. 2013). The current global rhino population is comprised of three Asian Species and two African species, the latter located in South Africa, Kenya, Tanzania, Namibia and Zimbabwe,. In Africa, the Southern white rhinoceros population is estimated at 20,700; and there are estimated to be around 4,885 black rhinoceros. The greater one-horned rhinoceros, found in Nepal and India, has a population of approximately 3,555. The other Asian rhino species are confined to Indonesia and have much lower numbers; there are fewer than 100 Sumatran rhinos and only 58-61 Javan rhinos (Save the Rhino 2016a). This article is protected by copyright. All rights reserved.

Concepts: African Union, International Rhino Foundation, South Africa, Black Rhinoceros, White Rhinoceros, Rhinoceroses, Africa, Rhinoceros

1

Extant rhinos are the largest extant herbivores exhibiting dietary specialisations for both browse and grass. However, the adaptive value of the wear-induced tooth morphology in rhinos has not been widely studied, and data on individual cusp and tooth positions have rarely been published. We evaluated upper cheek dentition of browsing Diceros bicornis and Rhinoceros sondaicus, mixed-feeding R. unicornis and grazing Ceratotherium simum using an extended mesowear method adapted for rhinos. We included single cusp scoring (EM®-S) to investigate inter-cusp and inter-tooth wear patterns. In accordance with previous reports, general mesowear patterns in D. bicornis and R. sondaicus were attrition-dominated and C. simum abrasion-dominated, reflecting their respective diets. Mesowear patterns for R. unicornis were more attrition-dominated than anticipated by the grass-dominated diet, which may indicate a low intake of environmental abrasives. EM®-S increased differentiation power compared to classical mesowear, with significant inter-cusp and inter-tooth differences detected. In D. bicornis, the anterior cusp was consistently more abrasion-dominated than the posterior. Wear differences in cusp position may relate to morphological adaptations to dietary regimes. Heterogeneous occlusal surfaces may facilitate the comminution of heterogeneous browse, whereas uniform, broad grinding surfaces may enhance the comminution of physically more homogeneous grass. A negative tooth wear gradient was found in D. bicornis, R. sondaicus and R. unicornis, with wear patterns becoming less abrasion-dominated from premolars to molars. No such gradients were evident in C. simum which displayed a uniform wear pattern. In browsers, premolars may be exposed to higher relative grit loads, which may result in the development of wear gradients. The second premolar may also have a role in food cropping. In grazers, high absolute amounts of ingested abrasives may override other signals, leading to a uniform wear pattern and dental function along the tooth row, which could relate to the observed evolution towards homodonty.

Concepts: Grazing, Canine tooth, Teeth, International Rhino Foundation, Premolar, Black Rhinoceros, White Rhinoceros, Rhinoceros