SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Interferon

235

ABSTRACT The recent emergence of a novel human coronavirus (HCoV-EMC) in the Middle East raised considerable concerns, as it is associated with severe acute pneumonia, renal failure, and fatal outcome and thus resembles the clinical presentation of severe acute respiratory syndrome (SARS) observed in 2002 and 2003. Like SARS-CoV, HCoV-EMC is of zoonotic origin and closely related to bat coronaviruses. The human airway epithelium (HAE) represents the entry point and primary target tissue for respiratory viruses and is highly relevant for assessing the zoonotic potential of emerging respiratory viruses, such as HCoV-EMC. Here, we show that pseudostratified HAE cultures derived from different donors are highly permissive to HCoV-EMC infection, and by using reverse transcription (RT)-PCR and RNAseq data, we experimentally determined the identity of seven HCoV-EMC subgenomic mRNAs. Although the HAE cells were readily responsive to type I and type III interferon (IFN), we observed neither a pronounced inflammatory cytokine nor any detectable IFN responses following HCoV-EMC, SARS-CoV, or HCoV-229E infection, suggesting that innate immune evasion mechanisms and putative IFN antagonists of HCoV-EMC are operational in the new host. Importantly, however, we demonstrate that both type I and type III IFN can efficiently reduce HCoV-EMC replication in HAE cultures, providing a possible treatment option in cases of suspected HCoV-EMC infection. IMPORTANCE A novel human coronavirus, HCoV-EMC, has recently been described to be associated with severe respiratory tract infection and fatalities, similar to severe acute respiratory syndrome (SARS) observed during the 2002-2003 epidemic. Closely related coronaviruses replicate in bats, suggesting that, like SARS-CoV, HCoV-EMC is of zoonotic origin. Since the animal reservoir and circumstances of zoonotic transmission are yet elusive, it is critically important to assess potential species barriers of HCoV-EMC infection. An important first barrier against invading respiratory pathogens is the epithelium, representing the entry point and primary target tissue of respiratory viruses. We show that human bronchial epithelia are highly susceptible to HCoV-EMC infection. Furthermore, HCoV-EMC, like other coronaviruses, evades innate immune recognition, reflected by the lack of interferon and minimal inflammatory cytokine expression following infection. Importantly, type I and type III interferon treatment can efficiently reduce HCoV-EMC replication in the human airway epithelium, providing a possible avenue for treatment of emerging virus infections.

Concepts: Immune system, Cytokine, Virus, Interferon, Influenza, Severe acute respiratory syndrome, Respiratory epithelium, Coronavirus

203

APS1/APECED patients are defined by defects in the autoimmune regulator (AIRE) that mediates central T cell tolerance to many self-antigens. AIRE deficiency also affects B cell tolerance, but this is incompletely understood. Here we show that most APS1/APECED patients displayed B cell autoreactivity toward unique sets of approximately 100 self-proteins. Thereby, autoantibodies from 81 patients collectively detected many thousands of human proteins. The loss of B cell tolerance seemingly occurred during antibody affinity maturation, an obligatorily T cell-dependent step. Consistent with this, many APS1/APECED patients harbored extremely high-affinity, neutralizing autoantibodies, particularly against specific cytokines. Such antibodies were biologically active in vitro and in vivo, and those neutralizing type I interferons (IFNs) showed a striking inverse correlation with type I diabetes, not shown by other anti-cytokine antibodies. Thus, naturally occurring human autoantibodies may actively limit disease and be of therapeutic utility.

Concepts: Immune system, Antibody, Protein, Cytokine, Diabetes mellitus type 1, Immunology, Interferon, Somatic hypermutation

171

Interferon-beta (IFNB) therapy for multiple sclerosis can lead to the induction of neutralizing antibodies (NAbs) against IFNB. Various methods are used for detection and quantification of NAbs.

Concepts: Immune system, Antibody, Cytokine, Natural killer cell, Interferon, Multiple sclerosis, Interferon beta-1a, Interferon beta-1b

169

BACKGROUND: Oral lichen planus (OLP) is seen frequently in patients with hepatitis C virus (HCV) infection. The aim of this study was to evaluate the occurrence of oral candidiasis, other mucosal lesions, and xerostomia during interferon (IFN) therapy for HCV infection. METHODS: Of 124 patients with HCV-infected liver diseases treated with IFN therapy in our hospital, 14 (mean age 56.00 +/- 12.94 years) who attended to receive administration of IFN once a week were identified and examined for Candida infection and other oral lesions and for the measurement of salivary flow. Serological assays also were carried out. RESULTS: Cultures of Candida from the tongue surfaces were positive in 7 (50.0%) of the 14 patients with HCV infection at least once during IFN therapy. C. albicans was the most common species isolated. The incidence of Candida during treatment with IFN did not increase above that before treatment. Additional oral mucosal lesions were observed in 50.0% (7/14) of patients: OLP in three (21.4%), angular cheilitis in three (21.4%) and recurrent aphthous stomatitis in one (7.1%). OLP occurred in one patient before treatment with IFN, in one during treatment and in one at the end of treatment. 85.7% of the oral lesions were treated with topical steroids. We compared the characteristics of the 7 patients in whom Candida was detected at least once during IFN therapy (group 1) and the 7 patients in whom Candida was not detected during IFN therapy (group 2). The prevalence of oral mucosal lesions (P=0.0075) and incidence of external use of steroids (P=0.0308) in group 1 were significantly higher than in group 2. The average body weight of group 1 decreased significantly compared to group 2 (P=0.0088). Salivary flow decreased in all subjects throughout the course of IFN treatment and returned at 6th months after the end of treatment. In group 1, the level of albumin at the beginning of the 6th month of IFN administration was lower than in group 2 (P=0.0550). According to multivariate analysis, one factor, the presence of oral mucosal lesions, was associated with the detection of Candida. The adjusted odds ratio for the factor was 36.00 (95% confidence interval 2.68-1485.94). CONCLUSION: We should pay more attention to oral candidiasis as well as other oral mucosal lesions, in patients with weight loss during IFN treatment.

Concepts: Interferon, Hepatitis C, Candida albicans, Candidiasis, Aphthous ulcer, Oral pathology, Lichen planus, Stomatitis

168

Two populations of human natural killer (NK) cells can be identified in peripheral blood. The majority are CD3(-)CD56(dim) cells while the minority exhibits a CD3(-)CD56(bright) phenotype. In vitro evidence indicates that CD56(bright) cells are precursors of CD56(dim) cells, but in vivo evidence is lacking. Here, we studied NK cells from a patient that suffered from a melanoma and opportunistic fungal infection during childhood. The patient exhibited a stable phenotype characterized by a reduction in the frequency of peripheral blood CD3(-)CD56(dim) NK cells, accompanied by an overt increase in the frequency and absolute number of CD3(-)CD56(bright) cells. These NK cells exhibited similar expression of perforin, CD57 and CD158, the major activating receptors CD16, NKp46, NKG2D, DNAM-1, and 2B4, as well as the inhibitory receptor CD94/NKG2A, on both CD56(bright) and CD56(dim) NK cells as healthy controls. Also, both NK cell subpopulations produced IFN-γ upon stimulation with cytokines, and CD3(-)CD56(dim) NK cells degranulated in response to cytokines or K562 cells. However, upon stimulation with cytokines, a substantial fraction of CD56(dim) cells failed to up-regulate CD57 and CD158, showed a reduction in the percentage of CD16(+) cells, and CD56(bright) cells did not down-regulate CD62L, suggesting that CD56(dim) cells could not acquire a terminally differentiated phenotype and that CD56(bright) cells exhibit a maturation defect that might result in a potential altered migration pattern. These observations, support the notion that NK cells of this patient display a maturation/activation defect that precludes the generation of mature NK cells at a normal rate accompanied by CD56(dim) NK cells that cannot completely acquire a terminally differentiated phenotype. Thus, our results provide evidence that support the concept that in vivo CD56(bright) NK cells differentiate into CD56(dim) NK cells, and contribute to further understand human NK cell ontogeny.

Concepts: Immune system, Antibody, Natural killer cell, Interferon, Interleukin, Cytotoxicity, Perforin, Granzyme

163

Despite impressive clinical success, cancer immunotherapy based on immune checkpoint blockade remains ineffective in many patients due to tumoral resistance. Here we use the autochthonous TiRP melanoma model, which recapitulates the tumoral resistance signature observed in human melanomas. TiRP tumors resist immunotherapy based on checkpoint blockade, cancer vaccines or adoptive T-cell therapy. TiRP tumors recruit and activate tumor-specific CD8(+) T cells, but these cells then undergo apoptosis. This does not occur with isogenic transplanted tumors, which are rejected after adoptive T-cell therapy. Apoptosis of tumor-infiltrating lymphocytes can be prevented by interrupting the Fas/Fas-ligand axis, and is triggered by polymorphonuclear-myeloid-derived suppressor cells, which express high levels of Fas-ligand and are enriched in TiRP tumors. Blocking Fas-ligand increases the anti-tumor efficacy of adoptive T-cell therapy in TiRP tumors, and increases the efficacy of checkpoint blockade in transplanted tumors. Therefore, tumor-infiltrating lymphocytes apoptosis is a relevant mechanism of immunotherapy resistance, which could be blocked by interfering with the Fas/Fas-ligand pathway.

Concepts: Immune system, Cancer, Oncology, Tumor, Interferon, Melanoma, Cancer immunotherapy

149

Immunotherapy has produced durable clinical benefit in patients with metastatic renal cell cancer (RCC). In the past, patients treated with interferon-alpha (IFN) and interleukin-2 (IL-2) have achieved complete responses, many of which have lasted for multiple decades. More recently, a large number of new agents have been approved for RCC, several of which attack tumor angiogenesis by inhibiting vascular endothelial growth factors (VEGF) and VEGF receptors (VEGFR), as well as tumor metabolism, inhibiting the mammalian target of rapamycin (mTOR). Additionally, a new class of immunotherapy agents, immune checkpoint inhibitors, is emerging and will play a significant role in the treatment of patients with RCC. Therefore, the Society for Immunotherapy of Cancer (SITC) convened a Task Force, which met to consider the current role of approved immunotherapy agents in RCC, to provide guidance to practicing clinicians by developing consensus recommendations and to set the stage for future immunotherapeutic developments in RCC.

Concepts: Immune system, Cancer, Angiogenesis, Vascular endothelial growth factor, Interferon, VEGF receptors, Renal cell carcinoma, Immunotherapy

123

The four human coronaviruses (HCoVs) are globally endemic respiratory pathogens. The Middle East respiratory syndrome (MERS) coronavirus (CoV) is an emerging CoV with a known zoonotic source in dromedary camels. Little is known about the origins of endemic HCoVs. Studying these viruses' evolutionary history could provide important insight into CoV emergence. In tests of MERS-CoV-infected dromedaries, we found viruses related to an HCoV, known as HCoV-229E, in 5.6% of 1,033 animals. Human- and dromedary-derived viruses are each monophyletic, suggesting ecological isolation. One gene of dromedary viruses exists in two versions in camels, full length and deleted, whereas only the deleted version exists in humans. The deletion increased in size over a succession starting from camelid viruses via old human viruses to contemporary human viruses. Live isolates of dromedary 229E viruses were obtained and studied to assess human infection risks. The viruses used the human entry receptor aminopeptidase N and replicated in human hepatoma cells, suggesting a principal ability to cause human infections. However, inefficient replication in several mucosa-derived cell lines and airway epithelial cultures suggested lack of adaptation to the human host. Dromedary viruses were as sensitive to the human type I interferon response as HCoV-229E. Antibodies in human sera neutralized dromedary-derived viruses, suggesting population immunity against dromedary viruses. Although no current epidemic risk seems to emanate from these viruses, evolutionary inference suggests that the endemic human virus HCoV-229E may constitute a descendant of camelid-associated viruses. HCoV-229E evolution provides a scenario for MERS-CoV emergence.

Concepts: Immune system, Bacteria, Evolution, Virus, Interferon, Camel, Dromedary, Camelid

90

The recent spread of Zika virus (ZIKV) and its association with increased rates of Guillain Barre and other neurological disorders as well as congenital defects that include microcephaly has created an urgent need to develop animal models to examine the pathogenesis of the disease and explore the efficacy of potential therapeutics and vaccines. Recently developed infection models for ZIKV utilize mice defective in interferon responses. In this study we establish and characterize a new model of peripheral ZIKV infection using immunocompetent neonatal C57BL/6 mice and compare its clinical progression, virus distribution, immune response, and neuropathology with that of C57BL/6-IFNAR KO mice. We show that while ZIKV infected IFNAR KO mice develop bilateral hind limb paralysis and die 5-6 days post-infection (dpi), immunocompetent B6 WT mice develop signs of neurological disease including unsteady gait, kinetic tremors, severe ataxia and seizures by 13 dpi that subside gradually over 2 weeks. Immunohistochemistry show viral antigen predominantly in cerebellum at the peak of the disease in both models. However, whereas IFNAR KO mice showed infiltration by neutrophils and macrophages and higher expression of IL-1, IL-6 and Cox2, B6 WT mice show a cellular infiltration in the CNS composed predominantly of T cells, particularly CD8+ T cells, and increased mRNA expression levels of IFNg, GzmB and Prf1 at peak of disease. Lastly, the CNS of B6 WT mice shows evidence of neurodegeneration predominantly in the cerebellum that are less prominent in mice lacking the IFN response possibly due to the difference in cellular infiltrates and rapid progression of the disease in that model. The development of the B6 WT model of ZIKV infection will provide insight into the immunopathology of the virus and facilitate assessments of possible therapeutics and vaccines.

Concepts: Immune system, Medicine, Bacteria, Infection, Natural killer cell, Interferon, Neurology, Neurological disorders

72

Most isolates of human rhinovirus, the common cold virus, replicate more robustly at the cool temperatures found in the nasal cavity (33-35 °C) than at core body temperature (37 °C). To gain insight into the mechanism of temperature-dependent growth, we compared the transcriptional response of primary mouse airway epithelial cells infected with rhinovirus at 33 °C vs. 37 °C. Mouse airway cells infected with mouse-adapted rhinovirus 1B exhibited a striking enrichment in expression of antiviral defense response genes at 37 °C relative to 33 °C, which correlated with significantly higher expression levels of type I and type III IFN genes and IFN-stimulated genes (ISGs) at 37 °C. Temperature-dependent IFN induction in response to rhinovirus was dependent on the MAVS protein, a key signaling adaptor of the RIG-I-like receptors (RLRs). Stimulation of primary airway cells with the synthetic RLR ligand poly I:C led to greater IFN induction at 37 °C relative to 33 °C at early time points poststimulation and to a sustained increase in the induction of ISGs at 37 °C relative to 33 °C. Recombinant type I IFN also stimulated more robust induction of ISGs at 37 °C than at 33 °C. Genetic deficiency of MAVS or the type I IFN receptor in infected airway cells permitted higher levels of viral replication, particularly at 37 °C, and partially rescued the temperature-dependent growth phenotype. These findings demonstrate that in mouse airway cells, rhinovirus replicates preferentially at nasal cavity temperature due, in part, to a less efficient antiviral defense response of infected cells at cool temperature.

Concepts: Protein, Gene, Antiviral drug, Interferon, Influenza, Common cold, Rhinovirus, Pleconaril