SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Insulin

402

Obesity and type 2 diabetes are characterized by altered gut microbiota, inflammation, and gut barrier disruption. Microbial composition and the mechanisms of interaction with the host that affect gut barrier function during obesity and type 2 diabetes have not been elucidated. We recently isolated Akkermansia muciniphila, which is a mucin-degrading bacterium that resides in the mucus layer. The presence of this bacterium inversely correlates with body weight in rodents and humans. However, the precise physiological roles played by this bacterium during obesity and metabolic disorders are unknown. This study demonstrated that the abundance of A. muciniphila decreased in obese and type 2 diabetic mice. We also observed that prebiotic feeding normalized A. muciniphila abundance, which correlated with an improved metabolic profile. In addition, we demonstrated that A. muciniphila treatment reversed high-fat diet-induced metabolic disorders, including fat-mass gain, metabolic endotoxemia, adipose tissue inflammation, and insulin resistance. A. muciniphila administration increased the intestinal levels of endocannabinoids that control inflammation, the gut barrier, and gut peptide secretion. Finally, we demonstrated that all these effects required viable A. muciniphila because treatment with heat-killed cells did not improve the metabolic profile or the mucus layer thickness. In summary, this study provides substantial insight into the intricate mechanisms of bacterial (i.e., A. muciniphila) regulation of the cross-talk between the host and gut microbiota. These results also provide a rationale for the development of a treatment that uses this human mucus colonizer for the prevention or treatment of obesity and its associated metabolic disorders.

Concepts: Nutrition, Diabetes mellitus type 2, Diabetes mellitus, Insulin resistance, Gut flora, Insulin, Bacteria, Obesity

315

The inability of current recommendations to control the epidemic of diabetes, the specific failure of the prevailing low-fat diets to improve obesity, cardiovascular risk, or general health and the persistent reports of some serious side effects of commonly prescribed diabetic medications, in combination with the continued success of low-carbohydrate diets in the treatment of diabetes and metabolic syndrome without significant side effects, point to the need for a reappraisal of dietary guidelines. The benefits of carbohydrate restriction in diabetes are immediate and well documented. Concerns about the efficacy and safety are long term and conjectural rather than data driven. Dietary carbohydrate restriction reliably reduces high blood glucose, does not require weight loss (although is still best for weight loss), and leads to the reduction or elimination of medication. It has never shown side effects comparable with those seen in many drugs. Here we present 12 points of evidence supporting the use of low-carbohydrate diets as the first approach to treating type 2 diabetes and as the most effective adjunct to pharmacology in type 1. They represent the best-documented, least controversial results. The insistence on long-term randomized controlled trials as the only kind of data that will be accepted is without precedent in science. The seriousness of diabetes requires that we evaluate all of the evidence that is available. The 12 points are sufficiently compelling that we feel that the burden of proof rests with those who are opposed.

Concepts: Pharmacology, Carbohydrate, Insulin, The Canon of Medicine, Randomized controlled trial, Diabetes mellitus, Obesity, Nutrition

295

While experimental and observational studies suggest that sugar intake is associated with the development of type 2 diabetes, independent of its role in obesity, it is unclear whether alterations in sugar intake can account for differences in diabetes prevalence among overall populations. Using econometric models of repeated cross-sectional data on diabetes and nutritional components of food from 175 countries, we found that every 150 kcal/person/day increase in sugar availability (about one can of soda/day) was associated with increased diabetes prevalence by 1.1% (p <0.001) after testing for potential selection biases and controlling for other food types (including fibers, meats, fruits, oils, cereals), total calories, overweight and obesity, period-effects, and several socioeconomic variables such as aging, urbanization and income. No other food types yielded significant individual associations with diabetes prevalence after controlling for obesity and other confounders. The impact of sugar on diabetes was independent of sedentary behavior and alcohol use, and the effect was modified but not confounded by obesity or overweight. Duration and degree of sugar exposure correlated significantly with diabetes prevalence in a dose-dependent manner, while declines in sugar exposure correlated with significant subsequent declines in diabetes rates independently of other socioeconomic, dietary and obesity prevalence changes. Differences in sugar availability statistically explain variations in diabetes prevalence rates at a population level that are not explained by physical activity, overweight or obesity.

Concepts: Insulin, Overweight, Cross-sectional data, Panel data, Scientific method, Econometrics, Nutrition, Obesity

280

High-protein (HP) intake during weight loss (WL) therapy is often recommended because it reduces the loss of lean tissue mass. However, HP intake could have adverse effects on metabolic function, because protein ingestion reduces postprandial insulin sensitivity. In this study, we compared the effects of ∼10% WL with a hypocaloric diet containing 0.8 g protein/kg/day and a hypocaloric diet containing 1.2 g protein/kg/day on muscle insulin action in postmenopausal women with obesity. We found that HP intake reduced the WL-induced decline in lean tissue mass by ∼45%. However, HP intake also prevented the WL-induced improvements in muscle insulin signaling and insulin-stimulated glucose uptake, as well as the WL-induced adaptations in oxidative stress and cell structural biology pathways. Our data demonstrate that the protein content of a WL diet can have profound effects on metabolic function and underscore the importance of considering dietary macronutrient composition during WL therapy for people with obesity.

Concepts: Metabolic syndrome, Enzyme, Protein, Diabetes mellitus, Adipose tissue, Insulin, Obesity, Nutrition

241

The obesity epidemic in the U.S. has led to extensive research into potential contributing dietary factors, especially fat and fructose. Recently, increased consumption of soybean oil, which is rich in polyunsaturated fatty acids (PUFAs), has been proposed to play a causal role in the epidemic. Here, we designed a series of four isocaloric diets (HFD, SO-HFD, F-HFD, F-SO-HFD) to investigate the effects of saturated versus unsaturated fat, as well as fructose, on obesity and diabetes. C57/BL6 male mice fed a diet moderately high in fat from coconut oil and soybean oil (SO-HFD, 40% kcal total fat) showed statistically significant increases in weight gain, adiposity, diabetes, glucose intolerance and insulin resistance compared to mice on a diet consisting primarily of coconut oil (HFD). They also had fatty livers with hepatocyte ballooning and very large lipid droplets as well as shorter colonic crypt length. While the high fructose diet (F-HFD) did not cause as much obesity or diabetes as SO-HFD, it did cause rectal prolapse and a very fatty liver, but no balloon injury. The coconut oil diet (with or without fructose) increased spleen weight while fructose in the presence of soybean oil increased kidney weight. Metabolomics analysis of the liver showed an increased accumulation of PUFAs and their metabolites as well as γ-tocopherol, but a decrease in cholesterol in SO-HFD. Liver transcriptomics analysis revealed a global dysregulation of cytochrome P450 (Cyp) genes in SO-HFD versus HFD livers, most notably in the Cyp3a and Cyp2c families. Other genes involved in obesity (e.g., Cidec, Cd36), diabetes (Igfbp1), inflammation (Cd63), mitochondrial function (Pdk4) and cancer (H19) were also upregulated by the soybean oil diet. Taken together, our results indicate that in mice a diet high in soybean oil is more detrimental to metabolic health than a diet high in fructose or coconut oil.

Concepts: Unsaturated fat, Glucose, Insulin, Metabolism, Fat, Saturated fat, Obesity, Nutrition

229

 To assess diagnostic accuracy of screening tests for pre-diabetes and efficacy of interventions (lifestyle or metformin) in preventing onset of type 2 diabetes in people with pre-diabetes.

Concepts: Insulin resistance, Diabetes, Obesity, Prevention, Sulfonylurea, Insulin, Evaluation, Diabetes mellitus type 2

218

The treatment of noncommunicable diseases (NCD), like coronary heart disease or type 2 diabetes mellitus, causes rising costs for the health system. Physical activity is supposed to reduce the risk for these diseases. Results of cross-sectional studies showed that physical activity is associated with better health, and that physical activity could prevent the development of these diseases. The purpose of this review is to summarize existing evidence for the long-term (>5 years) relationship between physical activity and weight gain, obesity, coronary heart disease, type 2 diabetes mellitus, Alzheimer’s disease and dementia.

Concepts: Insulin, Nutrition, Hypertension, Diabetes mellitus type 2, Medicine, Obesity, Diabetes mellitus, Epidemiology

201

Over-nutrition has fuelled the global epidemic of type 2 diabetes, but the role of individual macronutrients to the diabetogenic process is not well delineated. We aimed to examine the impact of dietary fatty acid intake on fasting and 2-hour plasma glucose concentrations, as well as tissue-specific insulin action governing each. Normoglycemic controls (n = 15), athletes (n = 14), and obese (n = 23), as well as people with prediabetes (n = 10) and type 2 diabetes (n = 11), were queried about their habitual diet using a Food Frequency Questionnaire. All subjects were screened by an oral glucose tolerance test (OGTT) and studied using the hyperinsulinemic/euglycemic clamp with infusion of 6,62H2-glucose. Multiple regression was performed to examine relationships between dietary fat intake and 1) fasting plasma glucose, 2) % suppression of endogenous glucose production, 3) 2-hour post-OGTT plasma glucose, and 4) skeletal muscle insulin sensitivity (glucose rate of disappearance (Rd) and non-oxidative glucose disposal (NOGD)). The %kcal from saturated fat (SFA) was positively associated with fasting (β = 0.303, P = 0.018) and 2-hour plasma glucose (β = 0.415, P<0.001), and negatively related to % suppression of hepatic glucose production (β = -0.245, P = 0.049), clamp Rd (β = -0.256, P = 0.001) and NOGD (β = -0.257, P = 0.001). The %kcal from trans fat was also negatively related to clamp Rd (β = -0.209, P = 0.008) and NOGD (β = -0.210, P = 0.008). In contrast, the %kcal from polyunsaturated fat (PUFA) was negatively associated with 2-hour glucose levels (β = -0.383, P = 0.001), and positively related to Rd (β = 0.253, P = 0.007) and NOGD (β = 0.246, P = 0.008). Dietary advice to prevent diabetes should consider the underlying pathophysiology of the prediabetic state.

Concepts: Unsaturated fat, Fat, Blood sugar, Saturated fat, Glucose tolerance test, Diabetes mellitus, Insulin, Nutrition

189

Self-monitoring of blood glucose among people with type 2 diabetes not treated with insulin does not appear to be effective in improving glycemic control. We investigated whether health professional review of telemetrically transmitted self-monitored glucose results in improved glycemic control in people with poorly controlled type 2 diabetes.

Concepts: Randomized controlled trial, Nutrition, Insulin resistance, Carbohydrate, Diabetes mellitus type 2, Insulin, Diabetes, Diabetes mellitus

189

The study investigated cross-sectional associations of total amount and patterns of sedentary behaviour with glucose metabolism status and the metabolic syndrome.

Concepts: Insulin resistance, Blood sugar, Diabetes mellitus type 2, Diabetes mellitus, Hypertension, Obesity, Nutrition, Insulin