SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Insulin receptor

52

Lung M2 macrophages are regulators of airway inflammation, associated with poor lung function in allergic asthma. Previously, we demonstrated that IL-4-induced M2 gene expression correlated with tyrosine phosphorylation of the insulin receptor substrate (IRS)-2 in macrophages. We hypothesized that negative regulation of IRS-2 activity following IL-4 stimulation is dependent upon serine phosphorylation of IRS-2. Herein, we describe an inverse relationship between tyrosine phosphorylation (pY) and serine phosphorylation (pS) of IRS-2 following IL-4 stimulation. Inhibiting serine phosphatase activity increased pS-IRS-2 and decreased pY-IRS-2 leading to reduced M2 gene expression (CD200R, CCL22, MMP12, and TGM2). We found that inhibition of p70S6K, downstream of TORC1, resulted in diminished pS-IRS-2 and prolonged pY-IRS-2 as well. Inhibition of p70S6K increased expression of CD200R and CCL22 indicating that p70S6K negatively regulates some, but not all, human M2 genes. Knocking down GRB10, another negative regulatory protein downstream of TORC1, enhanced both pY-IRS-2 and increased expression of all four M2 genes. Furthermore, GRB10 associated with IRS-2, NEDD4.2 (an E3-ubiquitin ligase), IL-4Rα and γC following IL-4 stimulation. Both IL-4Rα and γC were ubiquitinated after 30 minutes of IL-4 treatment, suggesting that GRB10 may regulate degradation of the IL-4 receptor signaling complex through interactions with NEDD4.2. Taken together, these data highlight two novel regulatory proteins that could be manipulated therapeutically to limit IL-4-induced IRS-2 signaling and polarization of M2 macrophages in allergic inflammation.

Concepts: Immune system, DNA, Gene, Gene expression, Enzyme, Asthma, Hormone, Insulin receptor

28

The mammalian target of rapamycin (mTOR) integrates signals from nutrients and insulin via two distinct complexes, mTORC1 and mTORC2. Disruption of mTORC2 impairs the insulin-induced activation of Akt, an mTORC2 substrate. Here, we found that mTORC2 can also regulate insulin signaling at the level of insulin receptor substrate-1 (IRS-1). Despite phosphorylation at the mTORC1-mediated serine sites, which supposedly triggers IRS-1 downregulation, inactive IRS-1 accumulated in mTORC2-disrupted cells. Defective IRS-1 degradation was due to attenuated expression and phosphorylation of the ubiquitin ligase substrate-targeting subunit, Fbw8. mTORC2 stabilizes Fbw8 by phosphorylation at Ser86, allowing the insulin-induced translocation of Fbw8 to the cytosol where it mediates IRS-1 degradation. Thus, mTORC2 negatively feeds back to IRS-1 via control of Fbw8 stability and localization. Our findings reveal that in addition to persistent mTORC1 signaling, heightened mTORC2 signals can promote insulin resistance due to mTORC2-mediated degradation of IRS-1.

Concepts: Signal transduction, Posttranslational modification, Insulin receptor, IRS1

17

Insulins in the venom of certain fish-hunting cone snails facilitate prey capture by rapidly inducing hypoglycemic shock. One such insulin, Conus geographus G1 (Con-Ins G1), is the smallest known insulin found in nature and lacks the C-terminal segment of the B chain that, in human insulin, mediates engagement of the insulin receptor and assembly of the hormone’s hexameric storage form. Removal of this segment (residues B23-B30) in human insulin results in substantial loss of receptor affinity. Here, we found that Con-Ins G1 is monomeric, strongly binds the human insulin receptor and activates receptor signaling. Con-Ins G1 thus is a naturally occurring B-chain-minimized mimetic of human insulin. Our crystal structure of Con-Ins G1 reveals a tertiary structure highly similar to that of human insulin and indicates how Con-Ins G1’s lack of an equivalent to the key receptor-engaging residue Phe(B24) is mitigated. These findings may facilitate efforts to design ultrarapid-acting therapeutic insulins.

Concepts: Protein, Insulin, Hormone, Endocrinology, Hypoglycemia, Insulin receptor, Conus, Conidae

5

We have previously demonstrated that insulin signaling, through the downstream signaling kinase Akt, is a potent modulator of dopamine transporter (DAT) activity, which fine-tunes dopamine (DA) signaling at the synapse. This suggests a mechanism by which impaired neuronal insulin receptor signaling, a hallmark of diet-induced obesity, may contribute to impaired DA transmission. We tested whether a short-term (two-week) obesogenic high-fat (HF) diet could reduce striatal Akt activity, a marker of central insulin, receptor signaling and blunt striatal and dopaminergic network responsiveness to amphetamine (AMPH).

Concepts: Nervous system, Neuron, Signal transduction, Insulin, Serotonin, Schizophrenia, Dopamine, Insulin receptor

3

Physiological insulin secretion exhibits various temporal patterns, the dysregulation of which is involved in diabetes development. We analyzed the impact of first-phase and pulsatile insulin release on glucose and lipid control with various hepatic insulin signaling networks. The mathematical model suggests that atypical protein kinase C (aPKC) undergoes a bistable switch-on and switch-off, under the control of insulin receptor substrate 2 (IRS2). The activation of IRS1 and IRS2 is temporally separated due to the inhibition of IRS1 by aPKC. The model further shows that the timing of aPKC switch-off is delayed by reduced first-phase insulin and reduced amplitude of insulin pulses. Based on these findings, we propose a sequential model of postprandial hepatic control of glucose and lipid by insulin, according to which delayed aPKC switch-off contributes to selective hepatic insulin resistance, which is a long-standing paradox in the field.

Concepts: Signal transduction, Adenosine triphosphate, Insulin, Diabetes mellitus, Glucose, Insulin resistance, Protein kinase, Insulin receptor

3

Insulin resistance causes diminished glucose uptake in similar regions of the brain in Alzheimer’s disease (AD) and type 2 diabetes mellitus (DM2). Brain tissue studies suggested that insulin resistance is caused by low insulin receptor signaling attributable to its abnormal association with more phospho (P)-serine-type 1 insulin receptor substrate (IRS-1) and less P-tyrosine-IRS-1. Plasma exosomes enriched for neural sources by immunoabsorption were obtained once from 26 patients with AD, 20 patients with DM2, 16 patients with frontotemporal dementia (FTD), and matched case control subjects. At 2 time points, they were obtained from 22 others when cognitively normal and 1 to 10 yr later when diagnosed with AD. Mean exosomal levels of extracted P-serine 312-IRS-1 and P-pan-tyrosine-IRS-1 by ELISA and the ratio of P-serine 312-IRS-1 to P-pan-tyrosine-IRS-1 (insulin resistance factor, R) for AD and DM2 and P-serine 312-IRS-1 and R for FTD were significantly different from those for case control subjects. The levels of R for AD were significantly higher than those for DM2 or FTD. Stepwise discriminant modeling showed correct classification of 100% of patients with AD, 97.5% of patients with DM2, and 84% of patients with FTD. In longitudinal studies of 22 patients with AD, exosomal levels of P-serine 312-IRS-1, P-pan-tyrosine-IRS-1, and R were significantly different 1 to 10 yr before and at the time of diagnosis compared with control subjects. Insulin resistance reflected in R values from this blood test is higher for patients with AD, DM2, and FTD than case control subjects; higher for patients with AD than patients with DM2 or FTD; and accurately predicts development of AD up to 10 yr prior to clinical onset.-Kapogiannis, D., Boxer, A., Schwartz, J. B., Abner, E. L., Biragyn, A., Masharani, U., Frassetto, L., Petersen, R. C., Miller, B. L., Goetzl, E. J. Dysfunctionally phosphorylated type 1 insulin receptor substrate in neural-derived blood exosomes of preclinical Alzheimer’s disease.

Concepts: Brain, Insulin, Diabetes mellitus type 2, Diabetes mellitus, Diabetes mellitus type 1, Obesity, Insulin resistance, Insulin receptor

3

The induction of autophagy in the mammalian heart during the perinatal period is an essential adaptation required to survive early neonatal starvation; however, the mechanisms that mediate autophagy suppression once feeding is established are not known. Insulin signaling in the heart is transduced via insulin and IGF-1 receptors (IGF-1Rs). We disrupted insulin and IGF-1R signaling by generating mice with combined cardiomyocyte-specific deletion of Irs1 and Irs2. Here we show that loss of IRS signaling prevented the physiological suppression of autophagy that normally parallels the postnatal increase in circulating insulin. This resulted in unrestrained autophagy in cardiomyocytes, which contributed to myocyte loss, heart failure, and premature death. This process was ameliorated either by activation of mTOR with aa supplementation or by genetic suppression of autophagic activation. Loss of IRS1 and IRS2 signaling also increased apoptosis and precipitated mitochondrial dysfunction, which were not reduced when autophagic flux was normalized. Together, these data indicate that in addition to prosurvival signaling, insulin action in early life mediates the physiological postnatal suppression of autophagy, thereby linking nutrient sensing to postnatal cardiac development.

Concepts: Pregnancy, Childbirth, Fetus, Insulin, Heart, Hormone, Mammal, Insulin receptor

2

Cigarette smoking promotes body weight reduction in humans while paradoxically also promoting insulin resistance (IR) and hyperinsulinemia. However, the mechanisms behind these effects are unclear. Here we show that nicotine, a major constituent of cigarette smoke, selectively activates AMP-activated protein kinase α2 (AMPKα2) in adipocytes, which in turn phosphorylates MAP kinase phosphatase-1 (MKP1) at serine 334, initiating its proteasome-dependent degradation. The nicotine-dependent reduction of MKP1 induces the aberrant activation of both p38 mitogen-activated protein kinase and c-Jun N-terminal kinase, leading to increased phosphorylation of insulin receptor substrate 1 (IRS1) at serine 307. Phosphorylation of IRS1 leads to its degradation, protein kinase B inhibition, and the loss of insulin-mediated inhibition of lipolysis. Consequently, nicotine increases lipolysis, which results in body weight reduction, but this increase also elevates the levels of circulating free fatty acids and thus causes IR in insulin-sensitive tissues. These results establish AMPKα2 as an essential mediator of nicotine-induced whole-body IR in spite of reductions in adiposity.

Concepts: Signal transduction, Smoking, Tobacco smoking, Cigarette, Mitogen-activated protein kinase, C-Jun N-terminal kinases, Protein kinases, Insulin receptor

2

Mitsugumin 53 (MG53) is a relatively newly identified tripartite motif-containing (TRIM) family muscle-specific E3 ubiquitin ligase that is expressed in skeletal muscle and the heart. It has been postulated to facilitate repair by targeting the site of an injury, and acting as a scaffold for assembly of a repair complex made up of dysferlin, annexin V, caveolin-3, and polymerase I and transcript release factor (PTRF). A recent letter published in Nature by Song et al. proposes an alternate function for MG53: as an E3 ligase that targets the insulin receptor and insulin receptor substrate 1 (IRS1) for degradation, therefore regulating muscle insulin signaling. This work is exciting, as it not only presents a novel role for MG53, but also suggests that muscle insulin signaling has a systemic influence on insulin resistance and the metabolic syndrome.

Concepts: Ubiquitin ligase, Insulin receptor

2

Prevalence of insulin resistance and the metabolic syndrome has been reported to be high in rheumatoid arthritis (RA) patients. Tumor necrosis factor (TNF), a pro-inflammatory cytokine with a major pathogenetic role in RA, may promote insulin resistance by inducing Ser312 phosphorylation (p-Ser312) of insulin receptor substrate (IRS)-1 and downregulating phosphorylated (p-)AKT. We examined whether anti-TNF therapy improves insulin resistance in RA patients and assessed changes in the insulin signaling cascade.

Concepts: Signal transduction, Insulin, Hormone, Rheumatoid arthritis, Insulin resistance, Cell signaling, Tumor necrosis factor-alpha, Insulin receptor