SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Insulin receptor

28

The mammalian target of rapamycin (mTOR) integrates signals from nutrients and insulin via two distinct complexes, mTORC1 and mTORC2. Disruption of mTORC2 impairs the insulin-induced activation of Akt, an mTORC2 substrate. Here, we found that mTORC2 can also regulate insulin signaling at the level of insulin receptor substrate-1 (IRS-1). Despite phosphorylation at the mTORC1-mediated serine sites, which supposedly triggers IRS-1 downregulation, inactive IRS-1 accumulated in mTORC2-disrupted cells. Defective IRS-1 degradation was due to attenuated expression and phosphorylation of the ubiquitin ligase substrate-targeting subunit, Fbw8. mTORC2 stabilizes Fbw8 by phosphorylation at Ser86, allowing the insulin-induced translocation of Fbw8 to the cytosol where it mediates IRS-1 degradation. Thus, mTORC2 negatively feeds back to IRS-1 via control of Fbw8 stability and localization. Our findings reveal that in addition to persistent mTORC1 signaling, heightened mTORC2 signals can promote insulin resistance due to mTORC2-mediated degradation of IRS-1.

Concepts: Signal transduction, Posttranslational modification, Insulin receptor, IRS1

16

Insulins in the venom of certain fish-hunting cone snails facilitate prey capture by rapidly inducing hypoglycemic shock. One such insulin, Conus geographus G1 (Con-Ins G1), is the smallest known insulin found in nature and lacks the C-terminal segment of the B chain that, in human insulin, mediates engagement of the insulin receptor and assembly of the hormone’s hexameric storage form. Removal of this segment (residues B23-B30) in human insulin results in substantial loss of receptor affinity. Here, we found that Con-Ins G1 is monomeric, strongly binds the human insulin receptor and activates receptor signaling. Con-Ins G1 thus is a naturally occurring B-chain-minimized mimetic of human insulin. Our crystal structure of Con-Ins G1 reveals a tertiary structure highly similar to that of human insulin and indicates how Con-Ins G1’s lack of an equivalent to the key receptor-engaging residue Phe(B24) is mitigated. These findings may facilitate efforts to design ultrarapid-acting therapeutic insulins.

Concepts: Protein, Insulin, Hormone, Endocrinology, Hypoglycemia, Insulin receptor, Conus, Conidae

3

Insulin resistance causes diminished glucose uptake in similar regions of the brain in Alzheimer’s disease (AD) and type 2 diabetes mellitus (DM2). Brain tissue studies suggested that insulin resistance is caused by low insulin receptor signaling attributable to its abnormal association with more phospho (P)-serine-type 1 insulin receptor substrate (IRS-1) and less P-tyrosine-IRS-1. Plasma exosomes enriched for neural sources by immunoabsorption were obtained once from 26 patients with AD, 20 patients with DM2, 16 patients with frontotemporal dementia (FTD), and matched case control subjects. At 2 time points, they were obtained from 22 others when cognitively normal and 1 to 10 yr later when diagnosed with AD. Mean exosomal levels of extracted P-serine 312-IRS-1 and P-pan-tyrosine-IRS-1 by ELISA and the ratio of P-serine 312-IRS-1 to P-pan-tyrosine-IRS-1 (insulin resistance factor, R) for AD and DM2 and P-serine 312-IRS-1 and R for FTD were significantly different from those for case control subjects. The levels of R for AD were significantly higher than those for DM2 or FTD. Stepwise discriminant modeling showed correct classification of 100% of patients with AD, 97.5% of patients with DM2, and 84% of patients with FTD. In longitudinal studies of 22 patients with AD, exosomal levels of P-serine 312-IRS-1, P-pan-tyrosine-IRS-1, and R were significantly different 1 to 10 yr before and at the time of diagnosis compared with control subjects. Insulin resistance reflected in R values from this blood test is higher for patients with AD, DM2, and FTD than case control subjects; higher for patients with AD than patients with DM2 or FTD; and accurately predicts development of AD up to 10 yr prior to clinical onset.-Kapogiannis, D., Boxer, A., Schwartz, J. B., Abner, E. L., Biragyn, A., Masharani, U., Frassetto, L., Petersen, R. C., Miller, B. L., Goetzl, E. J. Dysfunctionally phosphorylated type 1 insulin receptor substrate in neural-derived blood exosomes of preclinical Alzheimer’s disease.

Concepts: Brain, Insulin, Diabetes mellitus type 2, Diabetes mellitus, Diabetes mellitus type 1, Obesity, Insulin resistance, Insulin receptor

3

The induction of autophagy in the mammalian heart during the perinatal period is an essential adaptation required to survive early neonatal starvation; however, the mechanisms that mediate autophagy suppression once feeding is established are not known. Insulin signaling in the heart is transduced via insulin and IGF-1 receptors (IGF-1Rs). We disrupted insulin and IGF-1R signaling by generating mice with combined cardiomyocyte-specific deletion of Irs1 and Irs2. Here we show that loss of IRS signaling prevented the physiological suppression of autophagy that normally parallels the postnatal increase in circulating insulin. This resulted in unrestrained autophagy in cardiomyocytes, which contributed to myocyte loss, heart failure, and premature death. This process was ameliorated either by activation of mTOR with aa supplementation or by genetic suppression of autophagic activation. Loss of IRS1 and IRS2 signaling also increased apoptosis and precipitated mitochondrial dysfunction, which were not reduced when autophagic flux was normalized. Together, these data indicate that in addition to prosurvival signaling, insulin action in early life mediates the physiological postnatal suppression of autophagy, thereby linking nutrient sensing to postnatal cardiac development.

Concepts: Pregnancy, Childbirth, Fetus, Insulin, Heart, Hormone, Mammal, Insulin receptor

2

Cigarette smoking promotes body weight reduction in humans while paradoxically also promoting insulin resistance (IR) and hyperinsulinemia. However, the mechanisms behind these effects are unclear. Here we show that nicotine, a major constituent of cigarette smoke, selectively activates AMP-activated protein kinase α2 (AMPKα2) in adipocytes, which in turn phosphorylates MAP kinase phosphatase-1 (MKP1) at serine 334, initiating its proteasome-dependent degradation. The nicotine-dependent reduction of MKP1 induces the aberrant activation of both p38 mitogen-activated protein kinase and c-Jun N-terminal kinase, leading to increased phosphorylation of insulin receptor substrate 1 (IRS1) at serine 307. Phosphorylation of IRS1 leads to its degradation, protein kinase B inhibition, and the loss of insulin-mediated inhibition of lipolysis. Consequently, nicotine increases lipolysis, which results in body weight reduction, but this increase also elevates the levels of circulating free fatty acids and thus causes IR in insulin-sensitive tissues. These results establish AMPKα2 as an essential mediator of nicotine-induced whole-body IR in spite of reductions in adiposity.

Concepts: Signal transduction, Smoking, Tobacco smoking, Cigarette, Mitogen-activated protein kinase, C-Jun N-terminal kinases, Protein kinases, Insulin receptor

2

Mitsugumin 53 (MG53) is a relatively newly identified tripartite motif-containing (TRIM) family muscle-specific E3 ubiquitin ligase that is expressed in skeletal muscle and the heart. It has been postulated to facilitate repair by targeting the site of an injury, and acting as a scaffold for assembly of a repair complex made up of dysferlin, annexin V, caveolin-3, and polymerase I and transcript release factor (PTRF). A recent letter published in Nature by Song et al. proposes an alternate function for MG53: as an E3 ligase that targets the insulin receptor and insulin receptor substrate 1 (IRS1) for degradation, therefore regulating muscle insulin signaling. This work is exciting, as it not only presents a novel role for MG53, but also suggests that muscle insulin signaling has a systemic influence on insulin resistance and the metabolic syndrome.

Concepts: Ubiquitin ligase, Insulin receptor

2

Prevalence of insulin resistance and the metabolic syndrome has been reported to be high in rheumatoid arthritis (RA) patients. Tumor necrosis factor (TNF), a pro-inflammatory cytokine with a major pathogenetic role in RA, may promote insulin resistance by inducing Ser312 phosphorylation (p-Ser312) of insulin receptor substrate (IRS)-1 and downregulating phosphorylated (p-)AKT. We examined whether anti-TNF therapy improves insulin resistance in RA patients and assessed changes in the insulin signaling cascade.

Concepts: Signal transduction, Insulin, Hormone, Rheumatoid arthritis, Insulin resistance, Cell signaling, Tumor necrosis factor-alpha, Insulin receptor

1

Multiple system atrophy is a fatal sporadic adult-onset neurodegenerative disorder with no symptomatic or disease-modifying treatment available. The cytopathological hallmark of multiple system atrophy is the accumulation of α-synuclein aggregates in oligodendrocytes, forming glial cytoplasmic inclusions. Impaired insulin/insulin-like growth factor-1 signalling (IGF-1) and insulin resistance (i.e. decreased insulin/IGF-1) have been reported in other neurodegenerative disorders such as Alzheimer’s disease. Increasing evidence also suggests impaired insulin/IGF-1 signalling in multiple system atrophy, as corroborated by increased insulin and IGF-1 plasma concentrations in multiple system atrophy patients and reduced IGF-1 brain levels in a transgenic mouse model of multiple system atrophy. We here tested the hypothesis that multiple system atrophy is associated with brain insulin resistance and showed increased expression of the key downstream messenger insulin receptor substrate-1 phosphorylated at serine residue 312 in neurons and oligodendrocytes in the putamen of patients with multiple system atrophy. Furthermore, the expression of insulin receptor substrate 1 (IRS-1) phosphorylated at serine residue 312 was more apparent in inclusion bearing oligodendrocytes in the putamen. By contrast, it was not different between both groups in the temporal cortex, a less vulnerable structure compared to the putamen. These findings suggest that insulin resistance may occur in multiple system atrophy in regions where the neurodegenerative process is most severe and point to a possible relation between α-synuclein aggregates and insulin resistance. We also observed insulin resistance in the striatum of transgenic multiple system atrophy mice and further demonstrate that the glucagon-like peptide-1 analogue exendin-4, a well-tolerated and Federal Drug Agency-approved antidiabetic drug, has positive effects on insulin resistance and monomeric α-synuclein load in the striatum, as well as survival of nigral dopamine neurons. Additionally, plasma levels of exosomal neural-derived IRS-1 phosphorylated at serine residue 307 (corresponding to serine residue 312 in humans) negatively correlated with survival of nigral dopamine neurons in multiple system atrophy mice treated with exendin-4. This finding suggests the potential for developing this peripheral biomarker candidate as an objective outcome measure of target engagement for clinical trials with glucagon-like peptide-1 analogues in multiple system atrophy. In conclusion, our observation of brain insulin resistance in multiple system atrophy patients and transgenic mice together with the beneficial effects of the glucagon-like peptide-1 agonist exendin-4 in transgenic mice paves the way for translating this innovative treatment into a clinical trial.

Concepts: Neuron, Gene expression, Clinical trial, Diabetes mellitus, Neurology, Neurodegenerative disorders, Substantia nigra, Insulin receptor

1

Obesity-related insulin resistance is associated with fatty liver, dyslipidemia, and low plasma adiponectin. Insulin resistance due to insulin receptor (INSR) dysfunction is associated with none of these, but when due to dysfunction of the downstream kinase AKT2 phenocopies obesity-related insulin resistance. We report 5 patients with SHORT syndrome and C-terminal mutations in PIK3R1, encoding the p85α/p55α/p50α subunits of PI3K, which act between INSR and AKT in insulin signaling. Four of 5 patients had extreme insulin resistance without dyslipidemia or hepatic steatosis. In 3 of these 4, plasma adiponectin was preserved, as in insulin receptor dysfunction. The fourth patient and her healthy mother had low plasma adiponectin associated with a potentially novel mutation, p.Asp231Ala, in adiponectin itself. Cells studied from one patient with the p.Tyr657X PIK3R1 mutation expressed abundant truncated PIK3R1 products and showed severely reduced insulin-stimulated association of mutant but not WT p85α with IRS1, but normal downstream signaling. In 3T3-L1 preadipocytes, mutant p85α overexpression attenuated insulin-induced AKT phosphorylation and adipocyte differentiation. Thus, PIK3R1 C-terminal mutations impair insulin signaling only in some cellular contexts and produce a subphenotype of insulin resistance resembling INSR dysfunction but unlike AKT2 dysfunction, implicating PI3K in the pathogenesis of key components of the metabolic syndrome.

Concepts: Insulin, Obesity, Insulin resistance, Metabolic syndrome, Non-alcoholic fatty liver disease, Fatty liver, Steatosis, Insulin receptor

1

The insulin-like growth factor (IGF) pathway is thought to play an important role in brain development. Altered levels of IGFs and their signaling regulators have been shown in autism spectrum disorder (ASD) patients. In this study, we investigated whether coding region single-nucleotide polymorphisms (cSNPs) of the insulin receptor substrates (IRS1 and IRS2), key mediators of the IGF pathway, were associated with ASD in Korean males. Two cSNPs (rs1801123 of IRS1, and rs4773092 of IRS2) were genotyped using direct sequencing in 180 male ASD patients and 147 male control subjects. A significant association between rs1801123 of IRS1 and ASD was shown in additive (p = 0.022, odds ratio (OR) = 0.66, 95% confidence interval (CI) = 0.46-0.95) and dominant models (p = 0.013, OR = 0.57, 95% CI = 0.37-0.89). Allele frequency analysis also showed an association between rs1801123 and ASD (p = 0.022, OR = 0.66, 95% CI = 0.46-0.94). These results suggest that IRS1 may contribute to the susceptibility of ASD in Korean males.

Concepts: Epidemiology, Insulin-like growth factor 1, Genetic genealogy, Autism, Asperger syndrome, Autism spectrum, Insulin-like growth factor, Insulin receptor