Discover the most talked about and latest scientific content & concepts.

Concept: Influenza vaccine


In the United States, annual vaccination against seasonal influenza is recommended for all persons aged ≥6 months (1). During each influenza season since 2004-05, CDC has estimated the effectiveness of seasonal influenza vaccine to prevent laboratory-confirmed influenza associated with medically attended acute respiratory illness (ARI). This report uses data from 4,562 children and adults enrolled in the U.S. Influenza Vaccine Effectiveness Network (U.S. Flu VE Network) during November 2, 2017-February 3, 2018. During this period, overall adjusted vaccine effectiveness (VE) against influenza A and influenza B virus infection associated with medically attended ARI was 36% (95% confidence interval [CI] = 27%-44%). Most (69%) influenza infections were caused by A(H3N2) viruses. VE was estimated to be 25% (CI = 13% to 36%) against illness caused by influenza A(H3N2) virus, 67% (CI = 54%-76%) against A(H1N1)pdm09 viruses, and 42% (CI = 25%-56%) against influenza B viruses. These early VE estimates underscore the need for ongoing influenza prevention and treatment measures. CDC continues to recommend influenza vaccination because the vaccine can still prevent some infections with currently circulating influenza viruses, which are expected to continue circulating for several weeks. Even with current vaccine effectiveness estimates, vaccination will still prevent influenza illness, including thousands of hospitalizations and deaths. Persons aged ≥6 months who have not yet been vaccinated this season should be vaccinated.

Concepts: Immune system, Infectious disease, Virus, Vaccine, Vaccination, Influenza, Influenza pandemic, Influenza vaccine


To date, vaccination is the most cost-effective strategy to combat infectious diseases. Recently, a productivity gap affects the pharmaceutical industry. The productivity gap describes the situation whereby the invested resources within an industry do not match the expected product turn-over. While risk profiles (combining research and development timelines and transition rates) have been published for new chemical entities (NCE), little is documented on vaccine development. The objective is to calculate risk profiles for vaccines targeting human infectious diseases. A database was actively compiled to include all vaccine projects in development from 1998 to 2009 in the pre-clinical development phase, clinical trials phase I, II and III up to Market Registration. The average vaccine, taken from the preclinical phase, requires a development timeline of 10.71 years and has a market entry probability of 6%. Stratification by disease area reveals pandemic influenza vaccine targets as lucrative. Furthermore, vaccines targeting acute infectious diseases and prophylactic vaccines have shown to have a lower risk profile when compared to vaccines targeting chronic infections and therapeutic applications. In conclusion; these statistics apply to vaccines targeting human infectious diseases. Vaccines targeting cancer, allergy and autoimmune diseases require further analysis. Additionally, this paper does not address orphan vaccines targeting unmet medical needs, whether projects are in-licensed or self-originated and firm size and experience. Therefore, it remains to be investigated how these - and other - variables influence the vaccine risk profile. Although we find huge differences between the risk profiles for vaccine and NCE; vaccines outperform NCE when it comes to development timelines.

Concepts: Immune system, Infectious disease, Vaccine, Vaccination, Infection, Influenza, Pharmaceutical industry, Influenza vaccine


We randomized 115 children to trivalent inactivated influenza vaccine (TIV) or placebo. Over the following 9 months, TIV recipients had an increased risk of virologically-confirmed non-influenza infections (relative risk: 4.40; 95% confidence interval: 1.31-14.8). Being protected against influenza, TIV recipients may lack temporary non-specific immunity that protected against other respiratory viruses.

Concepts: Immune system, Virus, Vaccination, Innate immune system, Influenza, Avian influenza, English-language films, Influenza vaccine


Assessing the mortality impact of the 2009 influenza A H1N1 virus (H1N1pdm09) is essential for optimizing public health responses to future pandemics. The World Health Organization reported 18,631 laboratory-confirmed pandemic deaths, but the total pandemic mortality burden was substantially higher. We estimated the 2009 pandemic mortality burden through statistical modeling of mortality data from multiple countries.

Concepts: Influenza, Swine influenza, Pandemic, Influenza vaccine, World Health Organization, 2009 flu pandemic, Influenza A virus subtype H1N1, Pandemic H1N1/09 virus


 The 2014-15 influenza season was distinguished by an A(H3N2) epidemic of antigenically-drifted virus and vaccine containing identical components to 2013-14. We report 2014-15 vaccine effectiveness (VE) estimates from Canada and explore contributing agent-host factors.

Concepts: Immune system, Infectious disease, Virus, Vaccine, Vaccination, Influenza, Avian influenza, Influenza vaccine


Background During the 2009 influenza A (H1N1) pandemic, pregnant women were at risk for severe influenza illness. This concern was complicated by questions about vaccine safety in pregnant women that were raised by anecdotal reports of fetal deaths after vaccination. Methods We explored the safety of influenza vaccination of pregnant women by linking Norwegian national registries and medical consultation data to determine influenza diagnosis, vaccination status, birth outcomes, and background information for pregnant women before, during, and after the pandemic. We used Cox regression models to estimate hazard ratios for fetal death, with the gestational day as the time metric and vaccination and pandemic exposure as time-dependent exposure variables. Results There were 117,347 eligible pregnancies in Norway from 2009 through 2010. Fetal mortality was 4.9 deaths per 1000 births. During the pandemic, 54% of pregnant women in their second or third trimester were vaccinated. Vaccination during pregnancy substantially reduced the risk of an influenza diagnosis (adjusted hazard ratio, 0.30; 95% confidence interval [CI], 0.25 to 0.34). Among pregnant women with a clinical diagnosis of influenza, the risk of fetal death was increased (adjusted hazard ratio, 1.91; 95% CI, 1.07 to 3.41). The risk of fetal death was reduced with vaccination during pregnancy, although this reduction was not significant (adjusted hazard ratio, 0.88; 95% CI, 0.66 to 1.17). Conclusions Pandemic influenza virus infection in pregnancy was associated with an increased risk of fetal death. Vaccination during pregnancy reduced the risk of an influenza diagnosis. Vaccination itself was not associated with increased fetal mortality and may have reduced the risk of influenza-related fetal death during the pandemic. (Funded by the Norwegian Institute of Public Health.).

Concepts: Pregnancy, Childbirth, Embryo, Fetus, Vaccination, Obstetrics, Influenza, Influenza vaccine


Assessment of the effect of influenza on populations, including risk of infection, illness if infected, illness severity, and consultation rates, is essential to inform future control and prevention. We aimed to compare the community burden and severity of seasonal and pandemic influenza across different age groups and study years and gain insight into the extent to which traditional surveillance underestimates this burden.

Concepts: Infectious disease, Influenza, Avian influenza, Influenza pandemic, Transmission and infection of H5N1, Pandemic, Influenza vaccine, World Health Organization


Concerns have been raised over competing interests (CoI) among academics during the 2009 to 2010 A/H1N1 pandemic. Media reporting can influence public anxiety and demand for pharmaceutical products. We assessed CoI of academics providing media commentary during the early stages of the pandemic.

Concepts: Influenza, Swine influenza, Pandemic, Influenza vaccine, 2009 flu pandemic, Influenza A virus subtype H1N1, Pandemic H1N1/09 virus, H1N1


Influenza vaccines are most effective when the antigens in the vaccine match those of circulating strains. However, antigens contained in the vaccines do not always match circulating strains. In the present work we aimed to examine the vaccine efficacy (VE) afforded by influenza vaccines when they are not well matched to circulating strains.

Concepts: Pneumonia, Vaccine, Vaccination, Influenza, Influenza vaccine


ABSTRACT Community interactions at mucosal surfaces between viruses, like influenza virus, and respiratory bacterial pathogens are important contributors toward pathogenesis of bacterial disease. What has not been considered is the natural extension of these interactions to live attenuated immunizations, and in particular, live attenuated influenza vaccines (LAIVs). Using a mouse-adapted LAIV against influenza A (H3N2) virus carrying the same mutations as the human FluMist vaccine, we find that LAIV vaccination reverses normal bacterial clearance from the nasopharynx and significantly increases bacterial carriage densities of the clinically important bacterial pathogens Streptococcus pneumoniae (serotypes 19F and 7F) and Staphylococcus aureus (strains Newman and Wright) within the upper respiratory tract of mice. Vaccination with LAIV also resulted in 2- to 5-fold increases in mean durations of bacterial carriage. Furthermore, we show that the increases in carriage density and duration were nearly identical in all aspects to changes in bacterial colonizing dynamics following infection with wild-type (WT) influenza virus. Importantly, LAIV, unlike WT influenza viruses, had no effect on severe bacterial disease or mortality within the lower respiratory tract. Our findings are, to the best of our knowledge, the first to demonstrate that vaccination with a live attenuated viral vaccine can directly modulate colonizing dynamics of important and unrelated human bacterial pathogens, and does so in a manner highly analogous to that seen following wild-type virus infection. IMPORTANCE Following infection with an influenza virus, infected or recently recovered individuals become transiently susceptible to excess bacterial infections, particularly Streptococcus pneumoniae and Staphylococcus aureus. Indeed, in the absence of preexisting comorbidities, bacterial infections are a leading cause of severe disease during influenza epidemics. While this synergy has been known and is well studied, what has not been explored is the natural extension of these interactions to live attenuated influenza vaccines (LAIVs). Here we show, in mice, that vaccination with LAIV primes the upper respiratory tract for increased bacterial growth and persistence of bacterial carriage, in a manner nearly identical to that seen following wild-type influenza virus infections. Importantly, LAIV, unlike wild-type virus, did not increase severe bacterial disease of the lower respiratory tract. These findings may have consequences for individual bacterial disease processes within the upper respiratory tract, as well as bacterial transmission dynamics within LAIV-vaccinated populations.

Concepts: Immune system, Bacteria, Microbiology, Virus, Pneumonia, Vaccination, Influenza, Influenza vaccine