SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Influenza pandemic

359

Highly pathogenic avian H5N1 influenza A viruses occasionally infect humans, but currently do not transmit efficiently among humans. The viral haemagglutinin (HA) protein is a known host-range determinant as it mediates virus binding to host-specific cellular receptors. Here we assess the molecular changes in HA that would allow a virus possessing subtype H5 HA to be transmissible among mammals. We identified a reassortant H5 HA/H1N1 virus-comprising H5 HA (from an H5N1 virus) with four mutations and the remaining seven gene segments from a 2009 pandemic H1N1 virus-that was capable of droplet transmission in a ferret model. The transmissible H5 reassortant virus preferentially recognized human-type receptors, replicated efficiently in ferrets, caused lung lesions and weight loss, but was not highly pathogenic and did not cause mortality. These results indicate that H5 HA can convert to an HA that supports efficient viral transmission in mammals; however, we do not know whether the four mutations in the H5 HA identified here would render a wholly avian H5N1 virus transmissible. The genetic origin of the remaining seven viral gene segments may also critically contribute to transmissibility in mammals. Nevertheless, as H5N1 viruses continue to evolve and infect humans, receptor-binding variants of H5N1 viruses with pandemic potential, including avian-human reassortant viruses as tested here, may emerge. Our findings emphasize the need to prepare for potential pandemics caused by influenza viruses possessing H5 HA, and will help individuals conducting surveillance in regions with circulating H5N1 viruses to recognize key residues that predict the pandemic potential of isolates, which will inform the development, production and distribution of effective countermeasures.

Concepts: Virus, Influenza, Avian influenza, Influenza pandemic, Transmission and infection of H5N1, Pandemic, 2009 flu pandemic, Influenza A virus subtype H5N1

184

To the Editor: Avian-origin influenza A (H7N9) viruses emerged as human pathogens in China in 2013 and have caused 137 cases and 45 deaths to date.(1) These viruses have acquired mutations that could facilitate infection in mammals,(2) which could pose a pandemic threat if the viruses become readily transmissible in humans. Vaccines are a key defense against pandemics, but candidate vaccines featuring H7 hemagglutinins (HA) have been poorly immunogenic.(3) We have previously described the development, manufacture, and efficacy in mice of an A/Anhui/1/13 (H7N9) viruslike particle (VLP) vaccine produced in insect cells with the use of recombinant baculovirus. This vaccine . . .

Concepts: Immune system, Microbiology, Vaccine, Vaccination, Influenza, Influenza pandemic, Pandemic, Influenza vaccine

180

Influenza A H5N1 has killed millions of birds and raises serious public health concern because of its potential to spread to humans and cause a global pandemic. While the early focus was in Asia, recent evidence suggests that Egypt is a new epicenter for the disease. This includes characterization of a variant clade 2.2.1.1, which has been found almost exclusively in Egypt.We analyzed 226 HA and 92 NA sequences with an emphasis on the H5N1 2.2.1.1 strains in Egypt using a Bayesian discrete phylogeography approach. This allowed modeling of virus dispersion between Egyptian governorates including the most likely origin.

Concepts: Public health, Epidemiology, Influenza, Avian influenza, Influenza pandemic, Pandemic, 2009 flu pandemic, Egypt

170

170

Acute respiratory infections are a major cause of morbidity in children both in developed and developing countries. A wide range of respiratory viruses, including respiratory syncytial virus (RSV), influenza A and B viruses, parainfluenza viruses (PIVs), adenovirus, rhinovirus (HRV), have repeatedly been detected in acute lower respiratory tract infections (LRTI) in children in the past decades. However, in the last ten years thanks to progress in molecular technologies, newly discovered viruses have been identified including human Metapneumovirus (hMPV), coronaviruses NL63 (HcoV-NL63) and HKU1 (HcoV-HKU1), human Bocavirus (HBoV), new enterovirus (HEV), parechovirus (HpeV) and rhinovirus (HRV) strains, polyomaviruses WU (WUPyV) and KI (KIPyV) and the pandemic H1N1v influenza A virus. These discoveries have heavily modified previous knowledge on respiratory infections mainly highlighting that pediatric population is exposed to a variety of viruses with similar seasonal patterns. In this context establishing a causal link between a newly identified virus and the disease as well as an association between mixed infections and an increase in disease severity can be challenging. This review will present an overview of newly recognized as well as the main emerging respiratory viruses and seek to focus on the their contribution to infection and co-infection in LRTIs in childhood.

Concepts: Microbiology, Virus, Infection, Antiviral drug, Influenza, Influenza pandemic, Respiratory system, Human respiratory syncytial virus

148

Severe disease in humans caused by a novel influenza A virus that is distinct from circulating human influenza A viruses is a seminal event. It might herald sporadic human infections from an animal source - e.g., highly pathogenic avian influenza (HPAI) A (H5N1) virus; or it might signal the start of an influenza pandemic - e.g., influenza A(H1N1)pdm09 virus. Therefore, the discovery of novel influenza A (H7N9) virus infections in three critically ill patients reported in the Journal by Gao and colleagues is of major public health significance. Chinese scientists are to be congratulated for the apparent speed with which . . .

Concepts: Microbiology, Virus, Influenza, Avian influenza, Influenza pandemic, Pandemic, Influenza vaccine, Influenza A virus subtype H5N1

143

The health burden caused by seasonal influenza is substantial. We sought to examine the effectiveness of influenza vaccination against admission to hospital for acute cardiovascular and respiratory conditions and all-cause death in people with type 2 diabetes.

Concepts: Diabetes mellitus type 2, Pneumonia, Vaccine, Vaccination, Influenza, Influenza pandemic, Influenza vaccine, Influenza research

123

Background The first identified cases of avian influenza A (H7N9) virus infection in humans occurred in China during February and March 2013. We analyzed data obtained from field investigations to characterize the epidemiologic characteristics of H7N9 cases in China as of April 17, 2013. Methods Field investigations were conducted for each confirmed case of H7N9 virus infection. A patient was considered to have a confirmed case if the presence of the H7N9 virus was verified by means of real-time reverse-transcriptase-polymerase-chain-reaction (RT-PCR), viral isolation, or serologic testing. Information on demographic characteristics, exposure history, and illness timelines was obtained from patients with confirmed cases. Close contacts were monitored for 7 days for symptoms of illness. Throat swabs were obtained from contacts in whom symptoms developed and were tested for the presence of the H7N9 virus testing by means of real-time RT-PCR. Results Among 82 persons with confirmed H7N9 virus infection, the median age was 63 years (range, 2 to 89), 73% were male, and 84% were urban residents. Confirmed cases occurred in six areas of China. Of 77 persons with available data, 4 were poultry workers, and 77% had a history of exposure to live animals, including chickens (76%). A total of 17 persons (21%) died after a median duration of illness of 11 days, 60 remain critically ill, and 4 with clinically mild cases were discharged from the hospital; 1 pediatric patient was not admitted to the hospital. In two family clusters, human-to-human transmission of H7N9 virus could not be ruled out. A total of 1251 of the 1689 close contacts of case patients completed the monitoring period; respiratory symptoms developed in 19 of them (1.5%), all of whom tested negative for the H7N9 virus. Conclusions Most persons with confirmed H7N9 virus infection were critically ill and epidemiologically unrelated. Laboratory-confirmed human-to-human H7N9 virus transmission was not documented among close contacts, but such transmission could not be ruled out in two families.

Concepts: Epidemiology, Patient, Virus, Illness, Influenza, Avian influenza, Influenza pandemic, Influenza vaccine

110

In the United States, annual vaccination against seasonal influenza is recommended for all persons aged ≥6 months (1). Each influenza season since 2004-05, CDC has estimated the effectiveness of seasonal influenza vaccine to prevent influenza-associated, medically attended, acute respiratory illness (ARI). This report uses data, as of February 4, 2017, from 3,144 children and adults enrolled in the U.S. Influenza Vaccine Effectiveness Network (U.S. Flu VE Network) during November 28, 2016-February 4, 2017, to estimate an interim adjusted effectiveness of seasonal influenza vaccine for preventing laboratory-confirmed influenza virus infection associated with medically attended ARI. During this period, overall vaccine effectiveness (VE) (adjusted for study site, age group, sex, race/ethnicity, self-rated general health, and days from illness onset to enrollment) against influenza A and influenza B virus infection associated with medically attended ARI was 48% (95% confidence interval [CI] = 37%-57%). Most influenza infections were caused by A (H3N2) viruses. VE was estimated to be 43% (CI = 29%-54%) against illness caused by influenza A (H3N2) virus and 73% (CI = 54%-84%) against influenza B virus. These interim VE estimates indicate that influenza vaccination reduced the risk for outpatient medical visits by almost half. Because influenza activity remains elevated (2), CDC and the Advisory Committee on Immunization Practices recommend that annual influenza vaccination efforts continue as long as influenza viruses are circulating (1). Vaccination with 2016-17 influenza vaccines will reduce the number of infections with most currently circulating influenza viruses. Persons aged ≥6 months who have not yet been vaccinated this season should be vaccinated as soon as possible.

Concepts: Immune system, Virus, Vaccine, Vaccination, Influenza, Avian influenza, Influenza pandemic, Influenza vaccine

103

We assessed vaccine effectiveness (VE) against medically attended, laboratory-confirmed influenza in children 6 months to 15 years of age in 22 hospitals in Japan during the 2013-14 season. Our study was conducted according to a test-negative case-control design based on influenza rapid diagnostic test (IRDT) results. Outpatients who came to our clinics with a fever of 38°C or over and had undergone an IRDT were enrolled in this study. Patients with positive IRDT results were recorded as cases, and patients with negative results were recorded as controls. Between November 2013 and March 2014, a total of 4727 pediatric patients (6 months to 15 years of age) were enrolled: 876 were positive for influenza A, 66 for A(H1N1)pdm09 and in the other 810 the subtype was unknown; 1405 were positive for influenza B; and 2445 were negative for influenza. Overall VE was 46% (95% confidence interval [CI], 39-52). Adjusted VE against influenza A, influenza A(H1N1)pdm09, and influenza B was 63% (95% CI, 56-69), 77% (95% CI, 59-87), and 26% (95% CI, 14-36), respectively. Influenza vaccine was not effective against either influenza A or influenza B in infants 6 to 11 months of age. Two doses of influenza vaccine provided better protection against influenza A infection than a single dose did. VE against hospitalization influenza A infection was 76%. Influenza vaccine was effective against influenza A, especially against influenza A(H1N1)pdm09, but was much less effective against influenza B.

Concepts: Hospital, Vaccine, Physician, Influenza, Influenza pandemic, Fever, Influenza vaccine, Orthomyxoviridae