Discover the most talked about and latest scientific content & concepts.

Concept: Immunity


Older adults are less able to produce a protective antibody response to vaccinations. One factor that contributes to this is immune ageing. Here we examined whether diurnal variations in immune responses might extend to the antibody response to vaccination.

Concepts: Immune system, Antibody, Vaccination, Immunology, Immunity


Comparative genomic and/or transcriptomic analyses involving elasmobranchs remain limited, with genome level comparisons of the elasmobranch immune system to that of higher vertebrates, non-existent. This paper reports a comparative RNA-seq analysis of heart tissue from seven species, including four elasmobranchs and three teleosts, focusing on immunity, but concomitantly seeking to identify genetic similarities shared by the two lamnid sharks and the single billfish in our study, which could be linked to convergent evolution of regional endothermy.

Concepts: Immune system, Gene, Genetics, Organism, Innate immune system, Humoral immunity, Immunity, Shark


The innate immune system plays important roles in a number of disparate processes. Foremost, innate immunity is a first responder to invasion by pathogens and triggers early defensive responses and recruits the adaptive immune system. The innate immune system also responds to endogenous damage signals that arise from tissue injury. Recently it has been found that innate immunity plays an important role in neuroprotection against ischemic stroke through the activation of the primary innate immune receptors, Toll-like receptors (TLRs). Using several large-scale transcriptomic data sets from mouse and mouse macrophage studies we identified targets predicted to be important in controlling innate immune processes initiated by TLR activation. Targets were identified as genes with high betweenness centrality, so-called bottlenecks, in networks inferred from statistical associations between gene expression patterns. A small set of putative bottlenecks were identified in each of the data sets investigated including interferon-stimulated genes (Ifit1, Ifi47, Tgtp and Oasl2) as well as genes uncharacterized in immune responses (Axud1 and Ppp1r15a). We further validated one of these targets, Ifit1, in mouse macrophages by showing that silencing it suppresses induction of predicted downstream genes by lipopolysaccharide (LPS)-mediated TLR4 activation through an unknown direct or indirect mechanism. Our study demonstrates the utility of network analysis for identification of interesting targets related to innate immune function, and highlights that Ifit1 can exert a positive regulatory effect on downstream genes.

Concepts: Immune system, Bacteria, Innate immune system, Toll-like receptor, Humoral immunity, Immunity, Adaptive immune system, Pattern recognition receptor


THE ENVIRONMENTAL CONDITIONS THAT COULD LEAD TO AN INCREASED RISK FOR THE DEVELOPMENT OF AN INFECTION DURING PROLONGED SPACE FLIGHT INCLUDE: microgravity, stress, radiation, disturbance of circadian rhythms, and altered nutritional intake. A large body of literature exists on the impairment of the immune system by space flight. With the advent of missions outside the Earth’s magnetic field, the increased risk of adverse effects due to exposure to radiation from a solar particle event (SPE) needs to be considered. Using models of reduced gravity and SPE radiation, we identify that either 2 Gy of radiation or hindlimb suspension alone leads to activation of the innate immune system and the two together are synergistic. The mechanism for the transient systemic immune activation is a reduced ability of the GI tract to contain bacterial products. The identification of mechanisms responsible for immune dysfunction during extended space missions will allow the development of specific countermeasures.

Concepts: Immune system, Antibody, Innate immune system, Earth's magnetic field, Earth, Immunity, Systemic acquired resistance, Outer space


Dusquetide, a novel Innate Defense Regulator, modulates the innate immune system at a key convergence point in intracellular signaling pathways and has demonstrated activity in both reducing inflammation and increasing clearance of bacterial infection. Innate immunity has also been implicated in the pathogenesis of oral mucositis (OM), a universal toxicity of chemoradiation therapy (CRT). Testing the hypothesis that dusquetide can mitigate the development and duration of OM, preclinical studies have been completed and correlated with interim results from a Phase 2 clinical study in patients undergoing CRT for head and neck cancer. Dusquetide reduced the duration of OM in mouse and hamster models by approximately 50%, which was recapitulated by the 50% reduction of severe OM (SOM) in the Phase 2 trial. A reduction in the clinical rate of infection was also observed, consistent with previously reported preclinical studies. In aggregate, these results not only demonstrate the safety and efficacy of dusquetide in addressing this unmet medical need, but also provide proof of concept for the translation of dusquetide action between animal models and the human clinical setting, and further support the contention that innate immunity is an important driver for the initiation and continued impact of OM.

Concepts: Immune system, Inflammation, Bacteria, Signal transduction, Virus, Innate immune system, Immunity, Pre-clinical development


Cancer immunotherapy has transformed the treatment of cancer. However, increasing use of immune-based therapies, including the widely used class of agents known as immune checkpoint inhibitors, has exposed a discrete group of immune-related adverse events (irAEs). Many of these are driven by the same immunologic mechanisms responsible for the drugs' therapeutic effects, namely blockade of inhibitory mechanisms that suppress the immune system and protect body tissues from an unconstrained acute or chronic immune response. Skin, gut, endocrine, lung and musculoskeletal irAEs are relatively common, whereas cardiovascular, hematologic, renal, neurologic and ophthalmologic irAEs occur much less frequently. The majority of irAEs are mild to moderate in severity; however, serious and occasionally life-threatening irAEs are reported in the literature, and treatment-related deaths occur in up to 2% of patients, varying by ICI. Immunotherapy-related irAEs typically have a delayed onset and prolonged duration compared to adverse events from chemotherapy, and effective management depends on early recognition and prompt intervention with immune suppression and/or immunomodulatory strategies. There is an urgent need for multidisciplinary guidance reflecting broad-based perspectives on how to recognize, report and manage organ-specific toxicities until evidence-based data are available to inform clinical decision-making. The Society for Immunotherapy of Cancer (SITC) established a multidisciplinary Toxicity Management Working Group, which met for a full-day workshop to develop recommendations to standardize management of irAEs. Here we present their consensus recommendations on managing toxicities associated with immune checkpoint inhibitor therapy.

Concepts: Immune system, Antibody, Medicine, Asthma, Chemotherapy, Immunology, Humoral immunity, Immunity


Cyclic GMP-AMP synthase (cGAS) initiates the innate immune system in response to cytosolic dsDNA. After binding and activation from dsDNA, cGAS uses ATP and GTP to synthesize 2', 3' -cGAMP (cGAMP), a cyclic dinucleotide second messenger with mixed 2'-5' and 3'-5' phosphodiester bonds. Inappropriate stimulation of cGAS has been implicated in autoimmune disease such as systemic lupus erythematosus, thus inhibition of cGAS may be of therapeutic benefit in some diseases; however, the size and polarity of the cGAS active site makes it a challenging target for the development of conventional substrate-competitive inhibitors. We report here the development of a high affinity (KD = 200 nM) inhibitor from a low affinity fragment hit with supporting biochemical and structural data showing these molecules bind to the cGAS active site. We also report a new high throughput cGAS fluorescence polarization (FP)-based assay to enable the rapid identification and optimization of cGAS inhibitors. This FP assay uses Cy5-labelled cGAMP in combination with a novel high affinity monoclonal antibody that specifically recognizes cGAMP with no cross reactivity to cAMP, cGMP, ATP, or GTP. Given its role in the innate immune response, cGAS is a promising therapeutic target for autoinflammatory disease. Our results demonstrate its druggability, provide a high affinity tool compound, and establish a high throughput assay for the identification of next generation cGAS inhibitors.

Concepts: Immune system, Innate immune system, Rheumatoid arthritis, Rheumatology, Immunity, Systemic lupus erythematosus, Lupus erythematosus, Immunosuppressive drug


Regulatory T (Treg) cell infiltration constitutes a prominent feature of pancreatic ductal adenocarcinoma (PDA). However, the immunomodulatory function of Treg cells in PDA is poorly understood. Here, we demonstrate that Treg cell ablation is sufficient to evoke effective anti-tumor immune response in early and advanced pancreatic tumorigenesis in mice. This response is dependent on interferon-γ (IFN-γ)-producing cytotoxic CD8(+) T cells. We show that Treg cells engage in extended interactions with tumor-associated CD11c(+) dendritic cells (DCs) and restrain their immunogenic function by suppressing the expression of costimulatory ligands necessary for CD8(+) T cell activation. Consequently, tumor-associated CD8(+) T cells fail to display effector activities when Treg cell ablation is combined with DC depletion. We propose that tumor-infiltrating Treg cells can promote immune tolerance by suppressing tumor-associated DC immunogenicity. The therapeutic manipulation of this axis might provide an effective approach for the targeting of PDA.

Concepts: Immune system, Cancer, Enzyme, Organism, Immunology, Immunity, T cells, Autoimmunity


Studying the phenomenon of cellular senescence has been hindered by the lack of senescence-specific markers. As such, detection of proteins informally associated with senescence accompanies the use of senescence-associated β-galactosidase as a collection of semiselective markers to monitor the presence of senescent cells. To identify novel biomarkers of senescence, we immunized BALB/c mice with senescent mouse lung fibroblasts and screened for antibodies that recognized senescence-associated cell-surface antigens by FACS analysis and a newly developed cell-based ELISA. The majority of antibodies that we isolated, cloned, and sequenced belonged to the IgM isotype of the innate immune system. In-depth characterization of one of these monoclonal, polyreactive natural antibodies, the IgM clone 9H4, revealed its ability to recognize the intermediate filament vimentin. By using 9H4, we observed that senescent primary human fibroblasts express vimentin on their cell surface, and MS analysis revealed a posttranslational modification on cysteine 328 (C328) by the oxidative adduct malondialdehyde (MDA). Moreover, elevated levels of secreted MDA-modified vimentin were detected in the plasma of aged senescence-accelerated mouse prone 8 mice, which are known to have deregulated reactive oxygen species metabolism and accelerated aging. Based on these findings, we hypothesize that humoral innate immunity may recognize senescent cells by the presence of membrane-bound MDA-vimentin, presumably as part of a senescence eradication mechanism that may become impaired with age and result in senescent cell accumulation.

Concepts: Immune system, Antibody, Senescence, Innate immune system, Immunology, Immunity, Adaptive immune system, Ageing


Prolonged fasting (PF) promotes stress resistance, but its effects on longevity are poorly understood. We show that alternating PF and nutrient-rich medium extended yeast lifespan independently of established pro-longevity genes. In mice, 4 days of a diet that mimics fasting (FMD), developed to minimize the burden of PF, decreased the size of multiple organs/systems, an effect followed upon re-feeding by an elevated number of progenitor and stem cells and regeneration. Bi-monthly FMD cycles started at middle age extended longevity, lowered visceral fat, reduced cancer incidence and skin lesions, rejuvenated the immune system, and retarded bone mineral density loss. In old mice, FMD cycles promoted hippocampal neurogenesis, lowered IGF-1 levels and PKA activity, elevated NeuroD1, and improved cognitive performance. In a pilot clinical trial, three FMD cycles decreased risk factors/biomarkers for aging, diabetes, cardiovascular disease, and cancer without major adverse effects, providing support for the use of FMDs to promote healthspan.

Concepts: HIV, Immune system, Cancer, Bone marrow, Chemotherapy, Immunology, Immunity, Neurogenesis