Discover the most talked about and latest scientific content & concepts.

Concept: Immune system


There is much evidence that some pathogens manipulate the behaviour of their mosquito hosts to enhance pathogen transmission. However, it is unknown whether this phenomenon exists in the interaction of Anopheles gambiae sensu stricto with the malaria parasite, Plasmodium falciparum - one of the most important interactions in the context of humanity, with malaria causing over 200 million human cases and over 770 thousand deaths each year. Here we demonstrate, for the first time, that infection with P. falciparum causes alterations in behavioural responses to host-derived olfactory stimuli in host-seeking female An. gambiae s.s. mosquitoes. In behavioural experiments we showed that P. falciparum-infected An. gambiae mosquitoes were significantly more attracted to human odors than uninfected mosquitoes. Both P. falciparum-infected and uninfected mosquitoes landed significantly more on a substrate emanating human skin odor compared to a clean substrate. However, significantly more infected mosquitoes landed and probed on a substrate emanating human skin odor than uninfected mosquitoes. This is the first demonstration of a change of An. gambiae behaviour in response to olfactory stimuli caused by infection with P. falciparum. The results of our study provide vital information that could be used to provide better predictions of how malaria is transmitted from human being to human being by An. gambiae s.s. females. Additionally, it highlights the urgent need to investigate this interaction further to determine the olfactory mechanisms that underlie the differential behavioural responses. In doing so, new attractive compounds could be identified which could be used to develop improved mosquito traps for surveillance or trapping programmes that may even specifically target P. falciparum-infected An. gambiae s.s. females.

Concepts: Immune system, Malaria, Plasmodium falciparum, Plasmodium, Plasmodium vivax, Anopheles, Apicomplexa, Mosquito


Induction of broadly neutralizing antibodies (bnAbs) is a primary goal of HIV vaccine development. VRC01-class bnAbs are important vaccine leads because their precursor B cells targeted by an engineered priming immunogen are relatively common among humans. This priming immunogen has demonstrated the ability to initiate a bnAb response in animal models, but recall and maturation toward bnAb development has not been shown. Here, we report the development of boosting immunogens designed to guide the genetic and functional maturation of previously primed VRC01-class precursors. Boosting a transgenic mouse model expressing germline VRC01 heavy chains produced broad neutralization of near-native isolates (N276A) and weak neutralization of fully native HIV. Functional and genetic characteristics indicate that the boosted mAbs are consistent with partially mature VRC01-class antibodies and place them on a maturation trajectory that leads toward mature VRC01-class bnAbs. The results show how reductionist sequential immunization can guide maturation of HIV bnAb responses.

Concepts: Immune system, Antibody, Genetics, Gene expression, Bacteria, Developmental biology, Vaccine, Antigen


Background Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. Results At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P=0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P=0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P=0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P=0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P=0.31). Conclusions Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS number, NCT01327846 .).

Concepts: Immune system, Inflammation, Epidemiology, Myocardial infarction, Atherosclerosis, Cardiovascular disease, Statistical significance, C-reactive protein


Background In a randomized trial, the early introduction of peanuts in infants at high risk for allergy was shown to prevent peanut allergy. In this follow-up study, we investigated whether the rate of peanut allergy remained low after 12 months of peanut avoidance among participants who had consumed peanuts during the primary trial (peanut-consumption group), as compared with those who had avoided peanuts (peanut-avoidance group). Methods At the end of the primary trial, we instructed all the participants to avoid peanuts for 12 months. The primary outcome was the percentage of participants with peanut allergy at the end of the 12-month period, when the participants were 72 months of age. Results We enrolled 556 of 628 eligible participants (88.5%) from the primary trial; 550 participants (98.9%) had complete primary-outcome data. The rate of adherence to avoidance in the follow-up study was high (90.4% in the peanut-avoidance group and 69.3% in the peanut-consumption group). Peanut allergy at 72 months was significantly more prevalent among participants in the peanut-avoidance group than among those in the peanut-consumption group (18.6% [52 of 280 participants] vs. 4.8% [13 of 270], P<0.001). Three new cases of allergy developed in each group, but after 12 months of avoidance there was no significant increase in the prevalence of allergy among participants in the consumption group (3.6% [10 of 274 participants] at 60 months and 4.8% [13 of 270] at 72 months, P=0.25). Fewer participants in the peanut-consumption group than in the peanut-avoidance group had high levels of Ara h2 (a component of peanut protein)-specific IgE and peanut-specific IgE; in addition, participants in the peanut-consumption group continued to have a higher level of peanut-specific IgG4 and a higher peanut-specific IgG4:IgE ratio. Conclusions Among children at high risk for allergy in whom peanuts had been introduced in the first year of life and continued until 5 years of age, a 12-month period of peanut avoidance was not associated with an increase in the prevalence of peanut allergy. Longer-term effects are not known. (Funded by the National Institute of Allergy and Infectious Diseases and others; LEAP-On number, NCT01366846 .).

Concepts: Immune system, Epidemiology, Disease, Infectious disease, Hypersensitivity, Allergy, Peanut, Peanuts


Antibiotics, though remarkably useful, can also cause certain adverse effects. We detected that treatment of adult mice with antibiotics decreases hippocampal neurogenesis and memory retention. Reconstitution with normal gut flora (SPF) did not completely reverse the deficits in neurogenesis unless the mice also had access to a running wheel or received probiotics. In parallel to an increase in neurogenesis and memory retention, both SPF-reconstituted mice that ran and mice supplemented with probiotics exhibited higher numbers of Ly6C(hi) monocytes in the brain than antibiotic-treated mice. Elimination of Ly6C(hi) monocytes by antibody depletion or the use of knockout mice resulted in decreased neurogenesis, whereas adoptive transfer of Ly6C(hi) monocytes rescued neurogenesis after antibiotic treatment. We propose that the rescue of neurogenesis and behavior deficits in antibiotic-treated mice by exercise and probiotics is partially mediated by Ly6C(hi) monocytes.

Concepts: Immune system, Psychology, Bacteria, Gut flora, Hippocampus, Antibiotic, Probiotic, Clostridium difficile


An infant born to a woman with human immunodeficiency virus type 1 (HIV-1) infection began receiving antiretroviral therapy (ART) 30 hours after birth owing to high-risk exposure. ART was continued when detection of HIV-1 DNA and RNA on repeat testing met the standard diagnostic criteria for infection. After therapy was discontinued (when the child was 18 months of age), levels of plasma HIV-1 RNA, proviral DNA in peripheral-blood mononuclear cells, and HIV-1 antibodies, as assessed by means of clinical assays, remained undetectable in the child through 30 months of age. This case suggests that very early ART in infants may alter the establishment and long-term persistence of HIV-1 infection.

Concepts: HIV, AIDS, Immune system, Protein, Gene, Childbirth, Bacteria, Virus


Could some vaccines drive the evolution of more virulent pathogens? Conventional wisdom is that natural selection will remove highly lethal pathogens if host death greatly reduces transmission. Vaccines that keep hosts alive but still allow transmission could thus allow very virulent strains to circulate in a population. Here we show experimentally that immunization of chickens against Marek’s disease virus enhances the fitness of more virulent strains, making it possible for hyperpathogenic strains to transmit. Immunity elicited by direct vaccination or by maternal vaccination prolongs host survival but does not prevent infection, viral replication or transmission, thus extending the infectious periods of strains otherwise too lethal to persist. Our data show that anti-disease vaccines that do not prevent transmission can create conditions that promote the emergence of pathogen strains that cause more severe disease in unvaccinated hosts.

Concepts: Immune system, Infectious disease, Natural selection, Microbiology, Malaria, Vaccination, Smallpox, Marek's disease


The Advisory Committee on Immunization Practices (ACIP) recommends that adolescents aged 11-12 years routinely receive vaccines to prevent diseases, including human papillomavirus (HPV)-associated cancers, pertussis, and meningococcal disease (1). To assess vaccination coverage among adolescents in the United States, CDC analyzed data collected regarding 21,875 adolescents through the 2015 National Immunization Survey-Teen (NIS-Teen).* During 2014-2015, coverage among adolescents aged 13-17 years increased for each HPV vaccine dose among males, including ≥1 HPV vaccine dose (from 41.7% to 49.8%), and increased modestly for ≥1 HPV vaccine dose among females (from 60.0% to 62.8%) and ≥1 quadrivalent meningococcal conjugate vaccine (MenACWY) dose (from 79.3% to 81.3%). Coverage with ≥1 HPV vaccine dose was higher among adolescents living in households below the poverty level, compared with adolescents in households at or above the poverty level.(†) HPV vaccination coverage (≥1, ≥2, or ≥3 doses) increased in 28 states/local areas among males and in seven states among females. Despite limited progress, HPV vaccination coverage remained lower than MenACWY and tetanus, diphtheria, and acellular pertussis vaccine (Tdap) coverage, indicating continued missed opportunities for HPV-associated cancer prevention.

Concepts: Immune system, Cancer, Human papillomavirus, HPV vaccine, Vaccine, Anal cancer, Tetanus, Pertussis


Aedes aegypti mosquitoes are responsible for transmitting many medically important viruses such as those that cause Zika and dengue. The inoculation of viruses into mosquito bite sites is an important and common stage of all mosquito-borne virus infections. We show, using Semliki Forest virus and Bunyamwera virus, that these viruses use this inflammatory niche to aid their replication and dissemination in vivo. Mosquito bites were characterized by an edema that retained virus at the inoculation site and an inflammatory influx of neutrophils that coordinated a localized innate immune program that inadvertently facilitated virus infection by encouraging the entry and infection of virus-permissive myeloid cells. Neutrophil depletion and therapeutic blockade of inflammasome activity suppressed inflammation and abrogated the ability of the bite to promote infection. This study identifies facets of mosquito bite inflammation that are important determinants of the subsequent systemic course and clinical outcome of virus infection.

Concepts: Immune system, Inflammation, Infection, Mosquito, Yellow fever, Aedes aegypti, Aedes, Dengue fever


Sunlight has important biological effects in human skin. Ultraviolet (UV) light striking the epidermis catalyzes the synthesis of Vitamin D and triggers melanin production. Although a causative element in skin cancers, sunlight is also associated with positive health outcomes including reduced incidences of autoimmune diseases and cancers. The mechanisms, however, by which light affects immune function remain unclear. Here we describe direct photon sensing in human and mouse T lymphocytes, a cell-type highly abundant in skin. Blue light irradiation at low doses (<300 mJ cm(-2)) triggers synthesis of hydrogen peroxide (H2O2) in T cells revealed by the genetically encoded reporter HyPerRed. In turn, H2O2 activates a Src kinase/phospholipase C-γ1 (PLC-γ1) signaling pathway and Ca(2+) mobilization. Pharmacologic inhibition or genetic disruption of Lck kinase, PLC-γ1 or the T cell receptor complex inhibits light-evoked Ca(2+) transients. Notably, both light and H2O2 enhance T-cell motility in a Lck-dependent manner. Thus, T lymphocytes possess intrinsic photosensitivity and this property may enhance their motility in skin.

Concepts: Immune system, Vitamin D, Ultraviolet, T cell, Major histocompatibility complex, T cell receptor, Lck, Thymus