SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Ibuprofen

166

Cycloxygenase-2 (COX-2) is an attractive target for molecular imaging because it is an inducible enzyme that is expressed in response to inflammatory and proliferative stimuli. Recently, we reported that conjugation of indomethacin with carboxy-X-rhodamine dyes results in the formation of effective, targeted, optical imaging agents able to detect COX-2 in inflammatory tissues and pre-malignant and malignant tumors (Uddin et al. Cancer Res. 2010, 70, 3618-3627). The present paper summarizes the details of the structure-activity relationship (SAR) studies performed for lead optimization of these dyes. A wide range of fluorescent conjugates were designed and synthesized, and each of them was tested for their ability to selectively inhibit COX-2 as the purified protein and in human cancer cells. The SAR study revealed that indomethacin conjugates are the best COX-2-targeted agents compared to the other carboxylic acid-containing non-steroidal anti-inflammatory drugs (NSAIDs) or COX-2-selective inhibitors (COXIBs). An n-butyldiamide linker is optimal for tethering bulky fluorescent functionalities onto the NSAID or COXIB cores. The activity of conjugates also depends on the size, shape, and electronic properties of the organic fluorophores. These reagents are taken up by COX-2-expressing cells in culture, and the uptake is blocked by pretreatment with a COX inhibitor. In in vivo settings, these reagents become highly enriched in COX-2-expressing tumors compared to surrounding normal tissue, and they accumulate selectively in COX-2-expressing tumors as compared with COX-2-negative tumors implanted in the same mice. Thus, COX-2-targeted fluorescent inhibitors are useful for preclinical and clinical detection of lesions containing elevated levels of COX-2.

Concepts: Cancer, Cyclooxygenase, Non-steroidal anti-inflammatory drug, Anti-inflammatory, Paracetamol, Ibuprofen, Diclofenac, Celecoxib

165

Mefenamic acid, (MFA), a carboxylic acid-containing nonsteroidal anti-inflammatory drug (NSAID) is metabolized into the chemically-reactive, MFA-1-O-acyl-glucuronide (MFA-1-O-G), MFA-acyl-adenylate (MFA-AMP), and the MFA-S-acyl-CoA (MFA-CoA), all of which are electrophilic and capable of acylating nucleophilic sites on biomolecules. In this study, we investigate the non-enzymatic ability of each MFA acyl-linked metabolite to transacylate amino and thiol functional groups on the acceptor biomolecules glycine (Gly), taurine (Tau), glutathione (GSH), and N-acetylcysteine (NAC). In vitro incubations with each of the MFA acyl-linked metabolites (1 μM) in buffer under physiological conditions with Gly, Tau, GSH, or NAC (10 mM) revealed that MFA-CoA was 11.5- and 19.5-fold more reactive than MFA-AMP towards the acylation of cysteine-sulfhydryl groups of GSH and NAC, respectively. However, MFA-AMP was more reactive towards both Gly and Tau, 17.5-fold more reactive towards the N-acyl-amidation of taurine than its corresponding CoA thioester, while MFA-CoA displayed little reactivity towards glycine. Additionally, MFA-GSH was 5.6- and 108-fold more reactive towards NAC than MFA-CoA and MFA-AMP, respectively. In comparison to MFA-AMP and MFA-CoA, MFA-1-O-G was not significantly reactive towards all four bionucleophiles. MFA-AMP, MFA-CoA, MFA-1-O-G, MFA-GSH, and MFA-Tau were also detected in rat in vitro hepatocyte MFA (100 μM) incubations while MFA-Gly was not. These results demonstrate that MFA-AMP selectively reacts nonenzymatically with the amino functional groups of glycine and lysine, MFA-CoA selectively reacts nonenzymatically with the thiol functional groups of GSH and NAC, and MFA-GSH reacts nonenzymatically with the thiol functional group of GSH, all of which may potentially elicit an idiosyncratic toxicity in vivo.

Concepts: Amino acid, Amine, Functional group, Disulfide bond, Non-steroidal anti-inflammatory drug, Paracetamol, Ibuprofen, Carboxylic acid

84

To prevent pain inhibiting their performance, many athletes ingest over-the-counter (OTC) analgesics before competing. We aimed at defining the use of analgesics and the relation between OTC analgesic use/dose and adverse events (AEs) during and after the race, a relation that has not been investigated to date.

Concepts: Epidemiology, Clinical trial, Opioid, Pain, Paracetamol, Ibuprofen, Codeine

42

While it is now clear that paracetamol is ineffective for spinal pain, there is not consensus on the efficacy of non-steroidal anti-inflammatory drugs (NSAIDs) for this condition. We performed a systematic review with meta-analysis to determine the efficacy and safety of NSAIDs for spinal pain.

Concepts: Non-steroidal anti-inflammatory drug, Anti-inflammatory, Paracetamol, Ibuprofen

42

Background The cardiovascular safety of celecoxib, as compared with nonselective nonsteroidal antiinflammatory drugs (NSAIDs), remains uncertain. Methods Patients who required NSAIDs for osteoarthritis or rheumatoid arthritis and were at increased cardiovascular risk were randomly assigned to receive celecoxib, ibuprofen, or naproxen. The goal of the trial was to assess the noninferiority of celecoxib with regard to the primary composite outcome of cardiovascular death (including hemorrhagic death), nonfatal myocardial infarction, or nonfatal stroke. Noninferiority required a hazard ratio of 1.12 or lower, as well as an upper 97.5% confidence limit of 1.33 or lower in the intention-to-treat population and of 1.40 or lower in the on-treatment population. Gastrointestinal and renal outcomes were also adjudicated. Results A total of 24,081 patients were randomly assigned to the celecoxib group (mean [±SD] daily dose, 209±37 mg), the naproxen group (852±103 mg), or the ibuprofen group (2045±246 mg) for a mean treatment duration of 20.3±16.0 months and a mean follow-up period of 34.1±13.4 months. During the trial, 68.8% of the patients stopped taking the study drug, and 27.4% of the patients discontinued follow-up. In the intention-to-treat analyses, a primary outcome event occurred in 188 patients in the celecoxib group (2.3%), 201 patients in the naproxen group (2.5%), and 218 patients in the ibuprofen group (2.7%) (hazard ratio for celecoxib vs. naproxen, 0.93; 95% confidence interval [CI], 0.76 to 1.13; hazard ratio for celecoxib vs. ibuprofen, 0.85; 95% CI, 0.70 to 1.04; P<0.001 for noninferiority in both comparisons). In the on-treatment analysis, a primary outcome event occurred in 134 patients in the celecoxib group (1.7%), 144 patients in the naproxen group (1.8%), and 155 patients in the ibuprofen group (1.9%) (hazard ratio for celecoxib vs. naproxen, 0.90; 95% CI, 0.71 to 1.15; hazard ratio for celecoxib vs. ibuprofen, 0.81; 95% CI, 0.65 to 1.02; P<0.001 for noninferiority in both comparisons). The risk of gastrointestinal events was significantly lower with celecoxib than with naproxen (P=0.01) or ibuprofen (P=0.002); the risk of renal events was significantly lower with celecoxib than with ibuprofen (P=0.004) but was not significantly lower with celecoxib than with naproxen (P=0.19). Conclusions At moderate doses, celecoxib was found to be noninferior to ibuprofen or naproxen with regard to cardiovascular safety. (Funded by Pfizer; ClinicalTrials.gov number, NCT00346216 .).

Concepts: Myocardial infarction, Rheumatoid arthritis, Osteoarthritis, Non-steroidal anti-inflammatory drug, Paracetamol, Ibuprofen, Celecoxib, Naproxen

41

Salicylate and acetylsalicylic acid are potent and widely used anti-inflammatory drugs. They are thought to exert their therapeutic effects through multiple mechanisms, including the inhibition of cyclo-oxygenases, modulation of NF-κB activity, and direct activation of AMPK. However, the full spectrum of their activities is incompletely understood. Here we show that salicylate specifically inhibits CBP and p300 lysine acetyltransferase activity in vitro by direct competition with acetyl-Coenzyme A at the catalytic site. We used a chemical structure-similarity search to identify another anti-inflammatory drug, diflunisal, that inhibits p300 more potently than salicylate. At concentrations attainable in human plasma after oral administration, both salicylate and diflunisal blocked the acetylation of lysine residues on histone and non-histone proteins in cells. Finally, we found that diflunisal suppressed the growth of p300-dependent leukemia cell lines expressing AML1-ETO fusion protein in vitro and in vivo. These results highlight a novel epigenetic regulatory mechanism of action for salicylate and derivative drugs.

Concepts: DNA, Protein, Enzyme inhibitor, Anti-inflammatory, Paracetamol, Ibuprofen, Aspirin, Acetyl

34

Colorectal cancer (CRC) screening of the average risk population is only indicated according to age. We aim to elaborate a model to stratify the risk of CRC by incorporating environmental data and single nucleotide polymorphisms (SNP). The MCC-Spain case-control study included 1336 CRC cases and 2744 controls. Subjects were interviewed on lifestyle factors, family and medical history. Twenty-one CRC susceptibility SNPs were genotyped. The environmental risk model, which included alcohol consumption, obesity, physical activity, red meat and vegetable consumption, and nonsteroidal anti-inflammatory drug use, contributed to CRC with an average per factor OR of 1.36 (95% CI 1.27 to 1.45). Family history of CRC contributed an OR of 2.25 (95% CI 1.87 to 2.72), and each additional SNP contributed an OR of 1.07 (95% CI 1.04 to 1.10). The risk of subjects with more than 25 risk alleles (5(th) quintile) was 82% higher (OR 1.82, 95% CI 1.11 to 2.98) than subjects with less than 19 alleles (1(st) quintile). This risk model, with an AUROC curve of 0.63 (95% CI 0.60 to 0.66), could be useful to stratify individuals. Environmental factors had more weight than the genetic score, which should be considered to encourage patients to achieve a healthier lifestyle.

Concepts: Genetics, Non-steroidal anti-inflammatory drug, Anti-inflammatory, Paracetamol, Ibuprofen, Diclofenac

33

Exercise-induced muscle damage (EIMD) is a common condition resulting from a bout of vigorous exercise, particularly if the individual is unaccustomed to performance of the given movement. Symptoms of EIMD include delayed-onset muscle soreness (DOMS) and a loss of physical function. Nonsteroidal anti-inflammatory drugs (NSAIDs) are routinely prescribed post-exercise to alleviate these symptoms and restore normal physical function. Of potential concern for those who use NSAIDs to treat EIMD is the possibility that they may impair the adaptive response to exercise. Specifically, there is emerging evidence that the action of cyclo-oxygenase (COX) enzymes, and COX-2 in particular, are important and even necessary to achieve maximal skeletal muscle hypertrophy in response to functional overload. Given that NSAIDs exert their actions by blocking COX and thus suppressing prostaglandin production, a theoretical rationale exists whereby these drugs may have detrimental effects on muscle regeneration and supercompensation. Therefore, the purpose of this article is to extensively review the literature and evaluate the effects of NSAIDs on muscle growth and development. Based on current evidence, there is little reason to believe that the occasional use of NSAIDs will negatively affect muscle growth, although the efficacy for their use in alleviating inflammatory symptoms remains questionable. Evidence on the hypertrophic effects of the chronic use of NSAIDs is less clear. In those who are untrained, it does not appear that regular NSAID use will impede growth in the short term, and at least one study indicates that it may in fact have a positive impact. Given their reported impairment of satellite cell activity, however, longer-term NSAID use may well be detrimental, particularly in those who possess greater growth potential.

Concepts: Cyclooxygenase, Non-steroidal anti-inflammatory drug, Anti-inflammatory, Paracetamol, Ibuprofen, Diclofenac, Celecoxib, Muscle hypertrophy

32

Aspirin, nonsteroidal antiinflammatory drugs (NSAID), and acetaminophen are commonly used. Frequent use of analgesics has been associated with a higher risk of hearing loss. However, the association between duration of analgesic use and the risk of hearing loss is unclear. We investigated the relationship between duration of analgesic use and self-reported hearing loss among 55,850 women in the Nurses' Health Study. Cox proportional hazards regression was used to adjust for potential confounders. During 873,376 person-years of follow-up (1990-2012), longer durations of NSAID use (for >6 years of use compared with <1 year, multivariable-adjusted relative risk = 1.10, 95% confidence interval: 1.06, 1.15; P for trend < 0.001) and acetaminophen use (for >6 years of use compared with <1 year, multivariable-adjusted relative risk = 1.09, 95% confidence interval: 1.04, 1.14; P for trend < 0.001) were associated with higher risks of hearing loss. Duration of aspirin use was not associated with hearing loss (for >6 years of use compared with <1 year, multivariable-adjusted relative risk = 1.01, 95% confidence interval: 0.97, 1.05; P for trend = 0.35). In this cohort of women, longer durations of NSAID and acetaminophen use were associated with slightly higher risks of hearing loss, but duration of aspirin use was not. Considering the high prevalence of analgesic use, this may be an important modifiable contributor to hearing loss.

Concepts: Cyclooxygenase, Non-steroidal anti-inflammatory drug, Paracetamol, Ibuprofen, Diclofenac, Aspirin, Analgesic, Analgesics

32

In 2012, an Indian parliamentary committee reported that manufacturing licenses for large numbers of fixed dose combination (FDC) drugs had been issued by state authorities without prior approval of the Central Drugs Standard Control Organization (CDSCO) in violation of rules, and considered that some ambiguity until 1 May 2002 about states' powers might have contributed. To our knowledge, no systematic enquiry has been undertaken to determine if evidence existed to support these findings. We investigated CDSCO approvals for and availability of oral FDC drugs in four therapeutic areas: analgesia (non-steroidal anti-inflammatory drugs [NSAIDs]), diabetes (metformin), depression/anxiety (anti-depressants/benzodiazepines), and psychosis (anti-psychotics).

Concepts: Opioid, Non-steroidal anti-inflammatory drug, Anti-inflammatory, Paracetamol, Ibuprofen, Diclofenac, Analgesic, Celecoxib