Discover the most talked about and latest scientific content & concepts.

Concept: Hypromellose


The present investigation was carried out to formulate and optimize the bioerodable insert of Azithromycin in order to prolong the release time and improve the ocular availability in ophthalmic infections. A modified solvent casting method was used for the preparation of azithromycin insert in which hydroxyl propyl methyl cellulose (HPMC) and Eudragit RL100 were used as drug reservoir and rate controlling membrane respectively. Thereafter the, formulations were evaluated for the uniformity of thickness and weight, surface pH, folding endurance, percentage moisture loss, percentage moisture absorption, drug content, in-vitro release, kinetics studies (zero order, first order, Higuchi and Korsmeyer - Peppas model) and stability studies. The Formulation H8 (amongst the range of H1-H10) ,comprising of 1.5% HPMC and 3% Eudragit RL100 ,was found to be optimized formulation on the basis of uniformity of thickness (0.26 ± 0.004 mm) and weight (24.9 ± 0.27 mg), surface pH (7.1 ± 0.063), folding endurance (18.3 ± 0.81), percentage moisture loss (7.49 ± 0.30%), percentage moisture absorption (5.7%), drug content (1.98 mg ), in-vitro release (99%) , stability studies (Shelf life- 346 days) and better ocular tolerability. The formulation H8 showed a steady and controlled release of the drug over a 12 hour period with non-Fickian diffusion release mechanism, compared to a normal release period of 2-3 hours. The optimized insert showed promising results and can be used to treat a wide range of ocular infections.

Concepts: Pharmaceutical formulation, Hypromellose, Shelf life, Formulation, Control, E number, Methyl cellulose, Cellulose


The objective of this study was to investigate the effect of polymeric microcarriers on the in-vivo intranasal uptake of an anti-migraine drug for brain targeting. Mucoadhesive powder formulations consisted of antimigraine drug, zolmitriptan, and chitosans (various molecular weights and types) or hydroxypropyl methylcellulose (HPMC). Their suitability for nasal administration was evaluated by in-vitro and ex-vivo mucoadhesion and permeation tests. The formulations based on chitosan glutamate (CG) or HPMC were tested in-vivo because they showed good mucoadhesive properties and altered the permeation rate of the drug. The in-vivo results from intravenous infusion and nasal aqueous suspension of the drug or nasal particulate powders were compared. The plasmatic AUC values obtained within 8 h following intravenous administration appeared about three times higher than those obtained by nasal administration, independent of the formulations. Zolmitriptan concentrations in the cerebrospinal fluid obtained from nasal and intravenous administrations were respectively 30 and 90 times lower than the concentrations of the drug in the blood. Thus, nasal administration potentiated the central zolmitriptan activity allowing a reduction of the drug peripheral levels, with respect to the intravenous administration. Among nasally administered formulations, CG microparticles showed the highest efficacy in promoting the central uptake of zolmitriptan within 1 h.

Concepts: Psychoactive drug, Hypromellose, Methyl cellulose, Route of administration, Cerebrospinal fluid, Bolus, Intravenous therapy, Chemistry


Concomitant ingestion of alcohol and medications can greatly affect drug plasma concentrations as dose dumping or failure may occur as a result of the fact that formulation excipients may not always be resistant to alcohol. In this study, a natural polysaccharide (Sesamum radiatum gum) (SG) was extracted, characterized and used to formulate sustained release theophylline compacts to study the effect of varying alcohol concentrations (v/v) in dissolution media on drug release from these compacts. X-ray powder diffraction showed that the extracted gum was amorphous in nature with the powder having excellent compaction properties as observed with its compact being significantly harder than those prepared with pure hydroxypropyl methyl cellulose (HPMC) K4M. X-ray microtomography showed that the compacts produced were homogenous in nature, however, swelling studies showed failure of the compacts at the highest concentration of absolute ethanol used (40% v/v). Dissolution studies showed similarity at all levels of alcohol tested (f2 = 57-91) in simulated gastric (0.1 N HCl, pH 1.2) and intestinal fluids (phosphate buffer, pH 6.8) for the HPMC compacts whereas dissimilarity only occurred for the SG compacts at the highest alcohol concentration in both media (f2 = 35). The suitability of SG as a matrix former that can resist alcoholic effects therefore makes it suitable as an alternative polymer with wider applications for drug delivery.

Concepts: Hypromellose, Methyl cellulose, Ethanol, Alcohol, Diffraction, E number, Excipients, Cellulose


Paliperidone (PLPD) is approved for treatment and management of schizophrenia. The current study demonstrates the potential of in situ gel of PLPD for nasal delivery. The permeation of drug through sheep nasal mucosa was analyzed since the nose-to-brain pathway has been indicated for delivering drugs to the brain. The carbopol 934 (CP)- and hydroxypropyl methyl cellulose K4M (HPMC)-based in situ gels containing 0.2% CP and 0.4% w/v HPMC were optimized using experimental design software. The use of hydroxypropyl-β-cyclodextrin (HP-β-CD) in nasal permeation of drug was investigated. Transmucosal permeation of PLPD was examined using sheep nasal mucosa. The in situ gels of PLPD exhibited satisfactory mucoadhesion and showed sustained drug release. The mucocilliary toxicity and histopathological examination confirmed that the nasal mucosa architecture remains unaffected after treatment with PLPD in situ gel. The formulation containing HP-β-CD complex of PLPD exhibited higher rate of drug permeation through sheep nasal mucosa revealing the role of HP-β-CD as nasal absorption enhancer. Thus, CP- and HPMC-based pH-triggered in situ gel containing HP-β-CD-drug inclusion complex demonstrates a novel nasal delivery of PLPD.

Concepts: Gel, Excipients, Psychoactive drug, Mucus, Hypromellose, Methyl cellulose, E number, Cellulose


To assess the effect of hydroxypropyl methylcellulose (HPMC) 2% to prevent dry eye during phacoemulsification in senile and diabetic patients.

Concepts: Cellulose, E number, Methyl cellulose, Hypromellose


Effects of sodium carboxymethyl cellulose (CMC) and hydroxypropyl methyl cellulose (HPMC) on the pasting, viscoelastic, and morphological properties of rice starch gel were studied. The addition of CMC increased the peak and trough viscosities, while decreased the final and setback viscosities of rice starch. The peak and trough viscosities of rice starch gel were only little affected by the addition of HPMC. The dynamic viscoelastic result showed that the addition of CMC significantly increased the values of storage modulus (G') and loss modulus (G″), while reduced the value of tanδ as compared to the control sample. Only a small increase in values of G' and G″ was observed in the case of HPMC. The rice starch gel with CMC addition exhibited higher resistances to the stress and produced a stronger gel network. The creep recovery data were well fitted by a four-element Burger’s model. Furthermore, the morphological characteristics were in agreement with the finding of rheological results. It was concluded that the addition of CMC and HPMC modified the rheology of rice starch gel in different ways and interacted under different models based on their molecular structures.

Concepts: Edible thickening agents, Hypromellose, Excipients, Starch, Methyl cellulose, Carboxymethyl cellulose, E number, Cellulose


The need to combat poor water solubility has increased interest in supersaturating drug delivery systems. In this study, amorphous mesoporous magnesium carbonate (MMC) was used as a drug carrier to achieve supersaturation of tolfenamic acid and rimonabant, two drug compounds with low aqueous solubility. The potential synergy between MMC and hydroxypropyl methylcellulose (HPMC), a polymer commonly included as a precipitation inhibitor in drug delivery systems, was explored with the aim of extending the time that high supersaturation levels were maintained. Release was studied under physiological conditions using USP-2 dissolution baths. A new small-scale method was developed to enable measurement of the initial drug release occurring when the MMC is immersed in the water phase. It was shown that MMC and HPMC together resulted in significant supersaturation and that the polymer enabled both the achievement of a higher API concentration and extension of the supersaturation period. The new small-scale release method showed that the release was linearly increasing with the dose and that similar release rates were observed for the two model compounds. It was hence concluded that the MMC release was diffusion limited for the compounds explored.

Concepts: Pharmacology, Hypromellose, Precipitation, Drugs, Methyl cellulose, Solvation, Phase, Solubility


Dairy desserts are popular traditional products but because of their high calorie or fat content, they can be unsuitable for people who have certain dietary requirements. The aim of this study was to design panna cottas with similar organoleptic and textural properties to the traditional ones but with a lower fat content, by replacing part of the cream with new emulsions prepared with hydrocolloids (cellulose ethers), namely methylcellulose (MC) and hydroxypropyl methylcellulose (HPMC).

Concepts: Nutrition, Emulsion, Excipients, Hypromellose, Milk, Methyl cellulose, E number, Cellulose


Polymer strip films have emerged as a robust platform for poorly water-soluble drug delivery. However, the common conception is that films cannot exceed low drug loadings, mainly due to poor drug stability, slow release, and film brittleness. This study explores the ability to achieve high loadings of poorly water-soluble drug nanoparticles in strip films while retaining good mechanical properties and enhanced dissolution rate. Aqueous suspensions containing up to 30wt% griseofulvin nanoparticles were prepared via wet stirred media milling and incorporated into hydroxypropyl methylcellulose (HPMC) films. Griseofulvin loading in films was adjusted to be between 9-49wt% in HPMC-E15 films and 30-73wt% in HPMC-E4M films by varying the mixing ratio of HPMC solution-to-griseofulvin suspension. All films exhibited good content uniformity and nanoparticle redispersibility up to 50wt% griseofulvin, while E4M films above 50wt% griseofulvin had slightly worse content uniformity and poor nanoparticle redispersibility. Increasing drug loading in films generally required more time to achieve 100% release during dissolution, although polymer-drug clusters dispersed from E4M films above 50wt% griseofulvin, resulting in similar dissolution profiles. While all films exhibited good tensile strength, a significant decrease in percent elongation was observed above 40-50wt% GF, resulting in brittle films.

Concepts: E number, Sol-gel, Concentration, Hypromellose, Tensile strength, Methyl cellulose, Colloid, Solvation


The development of efficient strategies for the magnetic hyperthermia ablation of tumors remains challenging. To overcome the significant safety limitations, we developed a thermally contractible, injectable and biodegradable material for the minimally invasive and highly efficient magnetic hyperthermia ablation of tumors. This material was composed of hydroxypropyl methyl cellulose (HPMC), polyvinyl alcohol (PVA) and Fe3O4. The thermal contractibility of HPMC/Fe3O4 was designed to avoid damaging the surrounding normal tissue upon heating, which was confirmed by visual inspection, ultrasound imaging and computed tomography (CT). The efficient injectability of HPMC/Fe3O4 was proven using a very small needle. The biosafety of HPMC/Fe3O4 was evaluated by MTT and biochemical assays as well as flow cytometry (FCM). All the aforementioned data demonstrated the safety of HPMC/Fe3O4. The results of in vitro and ex vivo experiments showed that the temperature and necrotic volume of excised bovine liver were positively correlated with the HPMC/Fe3O4 weight, iron content and heating duration. The in vivo experimental results showed that the tumors could be completely ablated using 0.06 ml of HPMC/60%Fe3O4 after 180 s of induction heating. We believe that this novel, safe and biodegradable material will promote the rapid bench-to-bed translation of magnetic hyperthermia technology, and it is also expected to bring a new concept for the biomaterial research field.

Concepts: Medical imaging, Polyvinyl acetate, Flow cytometry, Hypromellose, Polyvinyl alcohol, Cellulose, Methyl cellulose, E number