SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Hymenoptera

363

The ant genus Pheidole-for all of its hyperdiversity and global ubiquity-is remarkably conservative with regard to morphological disparity. A striking exception to this constrained morphology is the spinescent morphotype, which has evolved multiple times across distantly related lineages of Indoaustralian Pheidole. The Pheidole cervicornis group contains perhaps the most extraordinary spinescent forms of all Pheidole. Here we present a taxonomic revision of the P. cervicornis group, and use microtomographic scanning technology to investigate the internal anatomy of the thoracic spines. Our findings suggest the pronotal spines of Pheidole majors, are possibly skeletomuscular adaptations for supporting their disproportionately large heads. The ‘head support hypothesis’ is an alternative to the mechanical defense hypothesis most often used to explain spinescence in ants. The P. cervicornis group is known only from New Guinea and is represented by the following four species, including two described here as new: P. barumtaun Donisthorpe, P. drogon sp. nov., P. cervicornis Emery, and P. viserion sp. nov. The group is most readily identified by the minor worker caste, which has extremely long pronotal spines and strongly bifurcating propodeal spines. The major and minor workers of all species are illustrated with specimen photographs, with the exception of the major worker of P. cervicornis, which is not known.

Concepts: Evolution, Species, Insect, Major, Ant, Hymenoptera, Minor scale, Minor chord

260

Optimality theory predicts the maximization of productivity in social insect colonies, but many inactive workers are found in ant colonies. Indeed, the low short-term productivity of ant colonies is often the consequence of high variation among workers in the threshold to respond to task-related stimuli. Why is such an inefficient strategy among colonies maintained by natural selection? Here, we show that inactive workers are necessary for the long-term sustainability of a colony. Our simulation shows that colonies with variable thresholds persist longer than those with invariable thresholds because inactive workers perform the critical function of replacing active workers when they become fatigued. Evidence of the replacement of active workers by inactive workers has been found in ant colonies. Thus, the presence of inactive workers increases the long-term persistence of the colony at the expense of decreasing short-term productivity. Inactive workers may represent a bet-hedging strategy in response to environmental stochasticity.

Concepts: Natural selection, Evolution, Operations research, Ant, Hymenoptera, Termite

180

Plants respond to herbivory with the emission of induced plant volatiles. These volatiles may attract parasitic wasps (parasitoids) that attack the herbivores. Although in this sense the emission of volatiles has been hypothesized to be beneficial to the plant, it is still debated whether this is also the case under natural conditions because other organisms such as herbivores also respond to the emitted volatiles. One important group of organisms, the enemies of parasitoids, hyperparasitoids, has not been included in this debate because little is known about their foraging behaviour. Here, we address whether hyperparasitoids use herbivore-induced plant volatiles to locate their host. We show that hyperparasitoids find their victims through herbivore-induced plant volatiles emitted in response to attack by caterpillars that in turn had been parasitized by primary parasitoids. Moreover, only one of two species of parasitoids affected herbivore-induced plant volatiles resulting in the attraction of more hyperparasitoids than volatiles from plants damaged by healthy caterpillars. This resulted in higher levels of hyperparasitism of the parasitoid that indirectly gave away its presence through its effect on plant odours induced by its caterpillar host. Here, we provide evidence for a role of compounds in the oral secretion of parasitized caterpillars that induce these changes in plant volatile emission. Our results demonstrate that the effects of herbivore-induced plant volatiles should be placed in a community-wide perspective that includes species in the fourth trophic level to improve our understanding of the ecological functions of volatile release by plants. Furthermore, these findings suggest that the impact of species in the fourth trophic level should also be considered when developing Integrated Pest Management strategies aimed at optimizing the control of insect pests using parasitoids.

Concepts: Species, Insect, Plant, Animal, Parasitism, Ant, Herbivore, Hymenoptera

176

Exclusion from a social group is an effective way to avoid parasite transmission. This type of social removal has also been proposed as a form of collective defense, or social immunity, in eusocial insect groups. If parasitic modification of host behavior is widespread in social insects, the underlying physiological and neuronal mechanisms remain to be investigated. We studied this phenomenon in honey bees parasitized by the mite Varroa destructor or microsporidia Nosema ceranae, which make bees leave the hive precociously. We characterized the chemical, behavioral and neurogenomic changes in parasitized bees, and compared the effects of both parasites.

Concepts: Insect, Honey bee, Beekeeping, Bee, Bumblebee, Ant, Apidae, Hymenoptera

168

Survey data over the last 100 years indicate that populations of the endemic Hawaiian leafroller moth, Omiodes continuatalis (Wallengren) (Lepidoptera: Crambidae), have declined, and the species is extirpated from large portions of its original range. Declines have been attributed largely to the invasion of non-native parasitoid species into Hawaiian ecosystems. To quantify changes in O. continuatalis distribution, we applied the maximum entropy modeling approach using Maxent. The model referenced historical (1892-1967) and current (2004-2008) survey data, to create predictive habitat suitability maps which illustrate the probability of occurrence of O. continuatalis based on historical data as contrasted with recent survey results. Probability of occurrence is predicted based on the association of biotic (vegetation) and abiotic (proxy of precipitation, proxy of temperature, elevation) environmental factors with 141 recent and historic survey locations, 38 of which O. continuatalis were collected from. Models built from the historical and recent surveys suggest habitat suitable for O. continuatalis has changed significantly over time, decreasing both in quantity and quality. We reference these data to examine the potential effects of non-native parasitoids as a factor in changing habitat suitability and range contraction for O. continuatalis. Synthesis and applications: Our results suggest that the range of O. continuatalis, an endemic Hawaiian species of conservation concern, has shrunk as its environment has degraded. Although few range shifts have been previously demonstrated in insects, such contractions caused by pressure from introduced species may be important factors in insect extinctions.

Concepts: Insect, Ecology, Futurology, Change, Lepidoptera, Hymenoptera, Principle of maximum entropy, Tortricidae

155

Chemical communication is fundamental to success in social insect colonies. Species-, colony-, and caste-specific blends of cuticular hydrocarbons (CHCs) and other chemicals have been well documented as pheromones, mediating important behavioral and physiological aspects of social insects. More specifically, royal pheromones used by queens (and kings in termites) enable workers to recognize and care for these vital individuals and maintain the reproductive division of labor. In termites, however, no royal-recognition pheromones have been identified to date. In the current study, solvent extracts of the subterranean termiteReticulitermes flavipeswere analyzed to assess differences in cuticular compounds among castes. We identified a royal-specific hydrocarbon-heneicosane-and several previously unreported and highly royal enriched long-chain alkanes. When applied to glass dummies, heneicosane elicited worker behavioral responses identical to those elicited by live termite queens, including increased vibratory shaking and antennation. Further, the behavioral effects of heneicosane were amplified when presented with nestmate termite workers' cuticular extracts, underscoring the importance of chemical context in termite royal recognition. Thus, heneicosane is a royal-recognition pheromone that is active in both queens and kings ofR. flavipesThe use of heneicosane as a queen and king recognition pheromone by termites suggests that CHCs evolved as royal pheromones ∼150 million years ago, ∼50 million years before their first use as queen-recognition pheromones in social Hymenoptera. We therefore infer that termites and social Hymenoptera convergently evolved the use of these ubiquitous compounds in royal recognition.

Concepts: Insect, Lepidoptera, Ant, Hymenoptera, Insects, Eusociality, Pheromone, Termite

106

Social insects frequently engage in oral fluid exchange - trophallaxis - between adults, and between adults and larvae. Although trophallaxis is widely considered a food-sharing mechanism, we hypothesized that endogenous components of this fluid might underlie a novel means of chemical communication between colony members. Through protein and small- molecule mass spectrometry and RNA sequencing, we found that trophallactic fluid in the ant Camponotus floridanus contains a set of specific digestion- and non-digestion related proteins, as well as hydrocarbons, microRNAs, and a key developmental regulator, juvenile hormone. When C. floridanus workers' food was supplemented with this hormone, the larvae they reared via trophallaxis were twice as likely to complete metamorphosis and became larger workers. Comparison of trophallactic fluid proteins across social insect species revealed that many are regulators of growth, development and behavioral maturation. These results suggest that trophallaxis plays previously unsuspected roles in communication and enables communal control of colony phenotypes.

Concepts: Protein, Gene, Metabolism, Insect, Developmental biology, Ant, Hymenoptera, Termite

48

The sophisticated organization of eusocial insect societies is largely based on the regulation of complex behaviors by hydrocarbon pheromones present on the cuticle. We used electrophysiology to investigate the detection of cuticular hydrocarbons (CHCs) by female-specific olfactory sensilla basiconica on the antenna of Camponotus floridanus ants through the utilization of one of the largest family of odorant receptors characterized so far in insects. These sensilla, each of which contains multiple olfactory receptor neurons, are differentially sensitive to CHCs and allow them to be classified into three broad groups that collectively detect every hydrocarbon tested, including queen and worker-enriched CHCs. This broad-spectrum sensitivity is conserved in a related species, Camponotus laevigatus, allowing these ants to detect CHCs from both nestmates and non-nestmates. Behavioral assays demonstrate that these ants are excellent at discriminating CHCs detected by the antenna, including enantiomers of a candidate queen pheromone that regulates the reproductive division of labor.

Concepts: Signal transduction, Insect, Arthropod, Olfactory receptor neuron, Olfactory receptor, Ant, Hymenoptera, Termite

29

Fossil mesostigmatid mites (Acari: Parasitiformes: Mesostigmata) are extremely rare, and specimens from only nine families, including four named species, have been described so far. A new record of Myrmozercon sp. described here from Eocene (ca 44-49 Myr) Baltic amber represents the first-and so far only-fossil example of the derived, extant family Laelapidae. Significantly, modern species of this genus are habitually myrmecophilous and the fossil mite described here is preserved attached to the head of the dolichoderine ant Ctenobethylus goepperti (Mayr, 1868). It thus offers the oldest unequivocal evidence for an ecological association between mesostigmatid mites and social insects in the order Hymenoptera.

Concepts: Evolution, Biology, Tick, Acari, Ant, Hymenoptera, Acarina

29

The golden paper wasp is a social insect whose colony members have the remarkable ability to recognise each others' faces. New research shows that this species is singularly skilled at learning about faces, opening interesting perspectives on convergent evolution of specialist cognitive abilities in insects and vertebrates.

Concepts: Psychology, Evolution, Insect, Honey bee, Face perception, Wasp, Ant, Hymenoptera