Discover the most talked about and latest scientific content & concepts.

Concept: Hygrometer


The role of relative humidity in the aerosol transmission of influenza was examined in a simulated examination room containing coughing and breathing manikins.

Concepts: Influenza, Humidity, Relative humidity, Psychrometrics, Hygrometer


Uncontrolled excess moisture in buildings is a common problem that can lead to changes in fungal communities. In buildings, moisture parameters can be classified by location and include assessments of moisture in the air, at a surface, or within a material. These parameters are not equivalent in dynamic indoor environments, which makes moisture-induced fungal growth in buildings a complex occurrence. In order to determine the circumstances that lead to such growth, it is essential to have a thorough understanding of in situ moisture measurement, the influence of building factors on moisture parameters, and the levels of these moisture parameters that lead to indoor fungal growth. Currently, there are disagreements in the literature on this topic. A literature review was conducted specifically on moisture-induced fungal growth on gypsum drywall. This review revealed that there is no consistent measurement approach used to characterize moisture in laboratory and field studies, with relative humidity measurements being most common. Additionally, many studies identify a critical moisture value, below which fungal growth will not occur. The values defined by relative humidity encompassed the largest range, while those defined by moisture content exhibited the highest variation. Critical values defined by equilibrium relative humidity were most consistent, and this is likely due to equilibrium relative humidity being the most relevant moisture parameter to microbial growth, since it is a reasonable measure of moisture available at surfaces, where fungi often proliferate. Several sources concur that surface moisture, particularly liquid water, is the prominent factor influencing microbial changes and that moisture in the air and within a material are of lesser importance. However, even if surface moisture is assessed, a single critical moisture level to prevent fungal growth cannot be defined, due to a number of factors, including variations in fungal genera and/or species, temperature, and nutrient availability. Despite these complexities, meaningful measurements can still be made to inform fungal growth by making localised, long-term, and continuous measurements of surface moisture. Such an approach will capture variations in a material’s surface moisture, which could provide insight on a number of conditions that could lead to fungal proliferation.

Concepts: Fungus, Water, Measurement, Humidity, Relative humidity, Hygrometer, Gypsum, Drywall


Electrospinning is an efficient and flexible method for nanofiber production, but it is influenced by many systemic, process, and environmental parameters that govern the electrospun product morphology. This study systematically investigates the influence of relative humidity (RH) on the electrospinning process. The results showed that the morphology of the electrospun product (shape and diameter) can be manipulated with precise regulation of RH during electrospinning. Because the diameter of nanofibers correlates with their rigidity, it was shown that RH control can lead to manipulation of material mechanical properties. Finally, based on the solution’s rheological parameter-namely, phase shift angle-we were able to predict the loss of homogenous nanofiber structure in correlation with RH conditions during electrospinning. This research addresses the mechanism of RH impact on the electrospinning process and offers the background to exploit it in order to better control nanomaterial properties and alter its applicability.

Concepts: Nanomaterials, Humidity, Relative humidity, Psychrometrics, Hygrometer


This work examined window/door opening as means of bedroom ventilation and the consequent effect upon occupants' sleep, using data from 17 healthy volunteers. Bedroom CO2 level, temperature, and relative humidity were measured over 5 days, for two cases: open window or door (internal, bedroom door), and closed window and door. Participant filled questionnaires and sleep diary provided subjective measure of sleep quality. Actigraphy objectively monitored the participants during sleep. Additionally, a FlexSensor, placed under pillows of participants, detected movement during sleep. Average CO2 level for the Open conditions was 717 ppm (SD = 197 ppm) and for Closed conditions was 1150 ppm (SD = 463 ppm). Absolute humidity levels were similar for both conditions, while Open conditions were slightly cooler (mean = 19.7°C, SD = 1.8°C) than Closed (mean = 20.1°C, SD = 1.5°C). Results showed significant correlations (P < .001) between actigraphy data and questionnaire responses for: sleep latency (r = .45), sleep length (r = .87), and number of awakenings (r = .28). Of all analyzed sleep parameters, questionnaire-based depth of sleep (P = .002) and actigraphy-based sleep phase (P = .003) were significantly different between Open and Closed conditions.

Concepts: Sleep, Humidity, Relative humidity, Psychrometrics, Hygrometer


Laboratory and epidemiological evidence indicate that ambient humidity modulates the survival and transmission of influenza. Here we explore whether the inclusion of humidity forcing in mathematical models describing influenza transmission improves the accuracy of forecasts generated with those models. We generate retrospective forecasts for 95 cities over 10 seasons in the United States and assess both forecast accuracy and error. Overall, we find that humidity forcing improves forecast performance (at 1-4 lead weeks, 3.8% more peak week and 4.4% more peak intensity forecasts are accurate than with no forcing) and that forecasts generated using daily climatological humidity forcing generally outperform forecasts that utilize daily observed humidity forcing (4.4% and 2.6% respectively). These findings hold for predictions of outbreak peak intensity, peak timing, and incidence over 2- and 4-week horizons. The results indicate that use of climatological humidity forcing is warranted for current operational influenza forecast.

Concepts: Regression analysis, Epidemiology, Prediction, Futurology, Future, Forecasting, Hygrometer, Weather forecasting


Interest in using hermetic technologies as a pest management solution for stored grain has risen in recent years. One hermetic approach, Purdue Improved Crop Storage (PICS) bags, has proven successful in controlling the postharvest pests of cowpea. This success encouraged farmers to use of PICS bags for storing other crops including maize. To assess whether maize can be safely stored in PICS bags without loss of quality, we carried out laboratory studies of maize grain infested with Sitophilus zeamais (Motshulsky) and stored in PICS triple bags or in woven polypropylene bags. Over an eight month observation period, temperatures in the bags correlated with ambient temperature for all treatments. Relative humidity inside PICS bags remained constant over this period despite the large changes that occurred in the surrounding environment. Relative humidity in the woven bags followed ambient humidity closely. PICS bags containing S. zeamais-infested grain saw a significant decline in oxygen compared to the other treatments. Grain moisture content declined in woven bags, but remained high in PICS bags. Seed germination was not significantly affected over the first six months in all treatments, but declined after eight months of storage when infested grain was held in woven bags. Relative damage was low across treatments and not significantly different between treatments. Overall, maize showed no signs of deterioration in PICS bags versus the woven bags and PICS bags were superior to woven bags in terms of specific metrics of grain quality.

Concepts: Physical quantities, Humidity, Relative humidity, Maize, Seed, Psychrometrics, Crops, Hygrometer


In this paper we present touch (or pressure) flexible sensors based on monolayer-capped nanoparticles (MCNPs) that are potentially inexpensive, could allow low-voltage operation and could provide a platform for multi-functional applications. We show that modifying the mechanical and geometrical properties of the flexible substrates, on which the MCNP films are deposited, allows measuring a large span of loads ranging between tens of mg to tens of grams. All flexible sensors exhibited repeatable responses even after a large number of bending cycles. In addition, we show that modified platforms of those touch (or pressure) sensors allow precise detection and monitoring of environmental temperature and humidity. Relying on their superior characteristics, we were able to build an MCNP-based prototype allowing simultaneous detection and monitoring of multiple environmental parameters of touch (or pressure), humidity and temperature. The excellent temperature (resolution higher than 1 °C and average error of ~5%) and relative humidity (resolution higher than 1% RH and average error of ~9%) sensitivities and the possibility to integrate and separate those sensing abilities makes the suggested platform interesting for potentially inexpensive and low-voltage multi-functional electronic-skin applications.

Concepts: Physical quantities, Humidity, Relative humidity, Psychrometrics, Hygrometer, Atmospheric thermodynamics


In the summer of 2010, Europe experienced outbreaks of West Nile Fever (WNF) in humans, which was preceded by hot spells. The objective of this study was to identify potential drivers of these outbreaks, such as spring and summer temperatures, relative humidity (RH), and precipitation.

Concepts: Precipitation, Physical quantities, Humidity, Water vapor, Relative humidity, Psychrometrics, Hygrometer, Summer of Love


In recent decades, the land surface has warmed substantially more than the ocean surface, and relative humidity has fallen over land. Amplified warming and declining relative humidity over land are also dominant features of future climate projections, with implications for climate-change impacts. An emerging body of research has shown how constraints from atmospheric dynamics and moisture budgets are important for projected future land-ocean contrasts, but these ideas have not been used to investigate temperature and humidity records over recent decades. Here we show how both the temperature and humidity changes observed over land between 1979 and 2016 are linked to warming over neighboring oceans. A simple analytical theory, based on atmospheric dynamics and moisture transport, predicts equal changes in moist static energy over land and ocean and equal fractional changes in specific humidity over land and ocean. The theory is shown to be consistent with the observed trends in land temperature and humidity given the warming over ocean. Amplified land warming is needed for the increase in moist static energy over drier land to match that over ocean, and land relative humidity decreases because land specific humidity is linked via moisture transport to the weaker warming over ocean. However, there is considerable variability about the best-fit trend in land relative humidity that requires further investigation and which may be related to factors such as changes in atmospheric circulations and land-surface properties.

Concepts: Precipitation, Climate, Physical quantities, Humidity, Relative humidity, Psychrometrics, Hygrometer


Insect hygroreceptors associate as antagonistic pairs of a moist cell and a dry cell together with a cold cell in small cuticular sensilla on the antennae. The mechanisms by which the atmospheric humidity stimulates the hygroreceptive cells remain elusive. Three models for humidity transduction have been proposed in which hygroreceptors operate either as mechanical hygrometers, evaporation detectors or psychrometers. Mechanical hygrometers are assumed to respond to the relative humidity, evaporation detectors to the saturation deficit and psychrometers to the temperature depression (the difference between wet-bulb and dry-bulb temperatures). The models refer to different ways of expressing humidity. This also means, however, that at different temperatures these different types of hygroreceptors indicate very different humidity conditions. The present study tested the adequacy of the three models on the cockroach’s moist and dry cells by determining whether the specific predictions about the temperature-dependence of the humidity responses are indeed observed. While in previous studies stimulation consisted of rapid step-like humidity changes, here we changed humidity slowly and continuously up and down in a sinusoidal fashion. The low rates of change made it possible to measure instantaneous humidity values based on UV-absorption and to assign these values to the hygroreceptive sensillum. The moist cell fitted neither the mechanical hygrometer nor the evaporation detector model: the temperature dependence of its humidity responses could not be attributed to relative humidity or to saturation deficit, respectively. The psychrometer model, however, was verified by the close relationships of the moist cell’s response with the wet-bulb temperature and the dry cell’s response with the dry-bulb temperature. Thus, the hygroreceptors respond to evaporation and the resulting cooling due to the wetness or dryness of the air. The drier the ambient air (absolutely) and the higher the temperature, the greater the evaporative temperature depression and the power to desiccate.

Concepts: Temperature, Humidity, Relative humidity, Psychrometrics, Dew point, Hygrometer, Atmospheric thermodynamics, Dry-bulb temperature