Discover the most talked about and latest scientific content & concepts.

Concept: Hydrozoa


BACKGROUND: Cnidaria (corals, sea anemones, hydroids, jellyfish) is a phylum of relatively simple aquatic animals characterized by the presence of the cnidocyst: a cell containing a giant capsular organelle with an eversible tubule (cnida). Species within Cnidaria have life cycles that involve one or both of the two distinct body forms, a typically benthic polyp, which may or may not be colonial, and a typically pelagic mostly solitary medusa. The currently accepted taxonomic scheme subdivides Cnidaria into two main assemblages: Anthozoa (Hexacorallia + Octocorallia) – cnidarians with a reproductive polyp and the absence of a medusa stage – and Medusozoa (Cubozoa, Hydrozoa, Scyphozoa, Staurozoa) – cnidarians that usually possess a reproductive medusa stage. Hypothesized relationships among these taxa greatly impact interpretations of cnidarian character evolution. RESULTS: We expanded the sampling of cnidarian mitochondrial genomes, particularly from Medusozoa, to reevaluate phylogenetic relationships within Cnidaria. Our phylogenetic analyses based on a mitochogenomic dataset support many prior hypotheses, including monophyly of Hexacorallia, Octocorallia, Medusozoa, Cubozoa, Staurozoa, Hydrozoa, Carybdeida, Chirodropida, and Hydroidolina, but reject the monophyly of Anthozoa, indicating that the Octocorallia + Medusozoa relationship is not the result of sampling bias, as proposed earlier. Further, our analyses contradict Scyphozoa [Discomedusae + Coronatae], Acraspeda [Cubozoa + Scyphozoa], as well as the hypothesis that Staurozoa is the sister group to all the other medusozoans. CONCLUSIONS: Cnidarian mitochondrial genomic data contain phylogenetic signal informative for understanding the evolutionary history of this phylum. Mitogenome-based phylogenies, which reject the monophyly of Anthozoa, provide further evidence for the polyp-first hypothesis. By rejecting the traditional Acraspeda and Scyphozoa hypotheses, these analyses suggest that the shared morphological characters in these groups are plesiomorphies, originated in the branch leading to Medusozoa. The expansion of mitogenomic data along with improvements in phylogenetic inference methods and use of additional nuclear markers will further enhance our understanding of the phylogenetic relationships and character evolution within Cnidaria.

Concepts: Coral, Cnidaria, Jellyfish, Anthozoa, Polyp, Hydrozoa, Sea anemone, Medusa


The early life stages of the cubomedusa Alatina cf. moseri from Osprey Reef (North Queensland, Australia) and Waikiki (Oahu, Hawaii) were studied using laboratory-based culturing conditions. Spawning populations from both regions were observed with reliable periodicity allowing polyp cultures from these locations to be collected and established under laboratory conditions. The polyps of this species were successfully reared from spawning adults. Polyps of Alatina cf. moseri were cultured at temperatures of 23-28°C, developed up to 19 tentacles and reached up to 1.70 mm in height. The balloon-shaped hypostomes possessed 4 well-defined lips. The polyps increased their numbers by means of formation of either sedentary polyp buds or creeping-polyp buds, which attached after 2-3 days. Metamorphosis occurred at temperatures of 25-28°C. Development of polyps and medusae were achieved for the first time within the genus Alatina and allowed comparisons of early life history between these and other species of the Carybdeida families. The metamorphosis and young medusa of this genus showed characters that differed distinctly from those noted for other Carybdeida species, but are very similar to the one described from Puerto Rico by Arneson and Cutress in 1976 for Alatina sp. (named by them Carybdea alata). Based on this evidence, the discrepancies in original specimen descriptions and the previous genetic comparisons, we support the suggestion that the two previously described species of Alatina from Australia and Hawaii (Alatina mordens and Alatina moseri) appear to represent artificial taxonomic units and may in fact be the same as the original Carybdea alata species named from Puerto Rico. Further taxonomic studies are desperately needed in order to clarify the various species and description discrepancies that exist within this newly proposed genus.

Concepts: Biology, Cnidaria, Jellyfish, Polyp, Hydrozoa, Box jellyfish, Medusa, Cubozoa


Green Fluorescent Proteins (GFPs) have been reported from a wide diversity of medusae, but only a few observations of green fluorescence have been reported for hydroid colonies. In this study, we report on fluorescence displayed by hydroid polyps of the genus Cytaeis Eschscholtz, 1829 (Hydrozoa: Anthoathecata: Filifera) found at night time in the southern Red Sea (Saudi Arabia) living on shells of the gastropod Nassarius margaritifer (Dunker, 1847) (Neogastropoda: Buccinoidea: Nassariidae). We examined the fluorescence of these polyps and compare with previously reported data. Intensive green fluorescence with a spectral peak at 518 nm was detected in the hypostome of the Cytaeis polyps, unlike in previous reports that reported fluorescence either in the basal parts of polyps or in other locations on hydroid colonies. These results suggest that fluorescence may be widespread not only in medusae, but also in polyps, and also suggests that the patterns of fluorescence localization can vary in closely related species. The fluorescence of polyps may be potentially useful for field identification of cryptic species and study of geographical distributions of such hydroids and their hosts.

Concepts: Saudi Arabia, Cnidaria, Jellyfish, Polyp, Hydrozoa, Yemen, Red Sea, Jeddah


Stings from the hydrozoan species in the genus Physalia cause intense, immediate skin pain and elicit serious systemic effects. There has been much scientific debate about the most appropriate first aid for these stings, particularly with regard to whether vinegar use is appropriate (most current recommendations recommend against vinegar). We found that only a small percentage (≤1.0%) of tentacle cnidae discharge during a sting event using an ex vivo tissue model which elicits spontaneous stinging from live cnidarian tentacles. We then tested a variety of rinse solutions on both Atlantic and Pacific Physalia species to determine if they elicit cnidae discharge, further investigating any that did not cause immediate significant discharge to determine if they are able to inhibit cnidae discharge in response to chemical and physical stimuli. We found commercially available vinegars, as well as the recently developed Sting No More(®) Spray, were the most effective rinse solutions, as they irreversibly inhibited cnidae discharge. However, even slight dilution of vinegar reduced its protective effects. Alcohols and folk remedies, such as urine, baking soda and shaving cream, caused varying amounts of immediate cnidae discharge and failed to inhibit further discharge, and thus likely worsen stings.

Concepts: Effectiveness, Jellyfish, Stinger, Vinegar, Sodium bicarbonate, Hydrozoa, STING


The genus Aurelia is one of the major contributors to jellyfish blooms in coastal waters, possibly due in part to hydroclimatic and anthropogenic causes, as well as their highly adaptive reproductive traits. Despite the wide plasticity of cnidarian life cycles, especially those recognized in certain Hydroza species, the known modifications of Aurelia life history were mostly restricted to its polyp stage. In this study, we document the formation of polyps directly from the ectoderm of degenerating juvenile medusae, cell masses from medusa tissue fragments, and subumbrella of living medusae. This is the first evidence for back-transformation of sexually mature medusae into polyps in Aurelia sp.1. The resulting reconstruction of the schematic life cycle of Aurelia reveals the underestimated potential of life cycle reversal in scyphozoan medusae, with possible implications for biological and ecological studies.

Concepts: Cnidaria, Jellyfish, Scyphozoa, Polyp, Hydrozoa, Sea anemone, Medusa, Portuguese Man o' War


Coloniality, as displayed by most hydrozoans, is thought to confer a size advantage in substrate-limited benthic marine environments and affects nearly every aspect of a species' ecology and evolution. Hydrozoan colonies normally develop through asexual budding of polyps that remain interconnected by continuous epithelia. The clade Aplanulata is unique in that it comprises mostly solitary species, including the model organism Hydra, with only a few colonial species. We reconstruct a multigene phylogeny to trace the evolution of coloniality in Aplanulata, revealing that the ancestor of Aplanulata was solitary and that coloniality was regained in the genus Ectopleura. Examination of Ectopleura larynx development reveals a unique type of colony formation never before described in Hydrozoa, in that colonies form through sexual reproduction followed by epithelial fusion of offspring polyps to adults. We characterize the expression of manacle, a gene involved in foot development in Hydra, to determine polyp-colony boundaries. Our results suggest that stalks beneath the neck do not have polyp identity and instead are specialized structures that interconnect polyps. Epithelial fusion, brooding behavior, and the presence of a skeleton were all key factors behind the evolution of this novel pathway to coloniality in Ectopleura.

Concepts: Reproduction, Biology, Organism, Asexual reproduction, Cnidaria, Polyp, Hydra, Hydrozoa


A new species of genus Hydra (Cnidaria: Hydrozoa: Hydridae), Hydra shenzhensis sp. nov. from Guangdong Province, China, is described and illustrated. Most polyps have five tentacles. Column length reaches 11 mm when relaxed. Buds do not acquire tentacles synchronously. Stenotele is broad and pyriform in shape, 1.2 times as long as its width. Holotrichous isorhiza is asymmetrical and slender (more than 2.7 times as long as its width), with transverse and slanting coils. Atrichous isorhiza is long, resembling a melon-seed in shape. Desmoneme is asymmetrically pyriform in shape. The new species, belonging to the vulgaris group, is dioecious; sexual reproduction was found to occur mostly during November and December under conditions of dense culture or food shortage. Two to thirteen testes, cone-like shape with papilla, formed beneath the tentacles. One to three ovaries, with an egg cup, milky white in color, formed on body column. Ninety percent of individuals developed only one ovum. On a mother polyp, a fertilized ovum developed an embryonic theca covering its surface. The embryotheca is brown, with a spine-like structure, covering a layer of transparent, membrane-like material. For phylogenetic analysis, the mitochondrial cytochrome oxidase subunit I gene (COI) of six hydra species collected from China was amplified by polymerase chain reaction (PCR) and sequenced. Morphological characters in combination with molecular evidence support the hydra described here as a new species.

Concepts: DNA, Polymerase chain reaction, Molecular biology, Coral, Cnidaria, Polyp, Hydra, Hydrozoa


Biased transitions are common throughout the tree of life. The class hydrozoa is no exception, having lost the feeding medusa stage at least 70 times. The family hydractiniidae includes one lineage with pelagic medusae (Podocoryna) and several without (e.g., Hydractinia). The benthic colony stage also varies widely in host specificity and in colony form. The five-gene phylogeny presented here requires multiple transitions between character states for medusae, host specificity, and colony phenotype. Significant phylogenetic correlations exist between medusoid form, colony morphology, and host specificity. Species with nonfeeding medusae are usually specialized on a single host type, and reticulate colonies are correlated with nonmotile hosts. The history of feeding medusae is less certain. Podocoryna is nested within five lineages lacking medusae. This requires either repeated losses of medusae, or the remarkable re-evolution of a feeding medusa after at least 150 million years. Traditional ancestral reconstruction favors medusa regain, but a likelihood framework testing biased transitions cannot distinguish between multiple losses versus regain. A hypothesis of multiple losses of feeding medusae requires transient selection pressure favoring such a loss. Populations of species with feeding medusae are always locally rare and lack of feeding medusae does not result in restricted species distribution around the world.

Concepts: Evolution, Biology, Species, Phylogenetic tree, Cnidaria, Jellyfish, Polyp, Hydrozoa


The study of stem cells in cnidarians has a history spanning hundreds of years, but it has primarily focused on the hydrozoan genus Hydra. While Hydra has a number of self-renewing cell types that act much like stem cells-in particular the interstitial cell line-finding cellular homologues outside of the Hydrozoa has been complicated by the morphological simplicity of stem cells and inconclusive gene expression data. In non-hydrozoan cnidarians, an enigmatic cell type known as the amoebocyte might play a similar role to interstitial cells, but there is little evidence that I-cells and amoebocytes are homologous. Instead, self-renewal and transdifferentiation of epithelial cells was probably more important to ancestral cnidarian development than any undifferentiated cell lineage, and only later in evolution did one or more cell types come under the regulation of a “stem” cell line. Ultimately, this hypothesis and competing ones will need to be tested by expanding genetic and developmental studies on a variety of cnidarian model systems.

Concepts: DNA, Genetics, Cell, Developmental biology, Cellular differentiation, Cnidaria, Hydra, Hydrozoa


Massive proliferations of scyphozoan jellyfish considerably affect human industries and irreversibly change food webs. Efforts to understand the role of jellyfish in marine ecosystems are based on a life cycle model described 200 years ago. According to this paradigm the pelagic medusae is considered seasonal and alternates with the benthic polyp stage from which it derives. However, we provide evidence that a) the occurrence of several species of medusae is not restricted to a season in the year, they overwinter, b) polyp- and medusa generations are neither temporally nor spatially separated, and c) “metagenesis” which is defined as the alternation between sexual and asexual generations does not always occur. Hence we recommend additions to the current model and argue that the scyphozoan life cycle should be considered multi-modal, rather than metagenetic. The implications of these findings for jellyfish proliferations, including possible consequences and associated environmental drivers, are discussed.

Concepts: Cnidaria, Jellyfish, Scyphozoa, Polyp, Hydrozoa, Medusa