Discover the most talked about and latest scientific content & concepts.

Concept: Hydroxamic acids


Increasing evidence shows that the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) possesses potent anti-inflammatory and immunomodulatory properties. It is tempting to evaluate the potential of SAHA as a therapeutic agent in various neuroinflammatory and neurodegenerative disorders.

Concepts: Histone deacetylase, Neuroscience, Neurology, Vorinostat, Histone deacetylase inhibitor, Trichostatin A, Hydroxamic acid, Hydroxamic acids


To improve the bioavailability and anticancer potential of suberoylanilide hydroxamic acid (SAHA) by developing a drug-loaded polymeric nanomicellar system.

Concepts: In vivo, In vitro fertilisation, In vitro, Vorinostat, Hydroxamic acid, Hydroxamic acids


Single-agent post-autologous transplant maintenance therapy with lenalidomide is standard of care for patients with multiple myeloma. The tolerability and effectiveness of combination post-transplant maintenance therapy is unknown, so we investigated lenalidomide and vorinostat (suberoylanilide hydroxamic acid) in this setting, hypothesizing that the regimen would be well tolerated and associated with an improved post-transplant response. This trial followed a standard 3 × 3 dose escalation phase 1 design. Vorinostat was administered beginning day +90 post-haematopoietic stem cell transplantation for days 1-7 and 15-21, and lenalidomide was started at 10 mg days 1-21, both on a 28-d cycle. The primary endpoint was maximum tolerated dose and dose limiting toxicities were assessed during the first cycle. Treatment was well tolerated in 16 enrolled patients. During Cycle 1, the most common toxicities included cytopenias, gastrointestinal complaints and fatigue. Seven patients improved their transplant response after starting combination therapy. The median follow-up was 38·4 months, and the median progression-free survival and overall survival have yet to be reached. This oral post-transplant maintenance regimen was well tolerated. This is the first trial to publish results on the use of a histone deacetylase inhibitor in the maintenance setting, and it provides rationale for the ongoing randomized trial in maintenance (ISRCTN 49407852).

Concepts: Multiple myeloma, Histone deacetylase, Vorinostat, Histone deacetylase inhibitor, Trichostatin A, Hydroxamic acid, Hydroxamic acids


This study compared the efficacy and safety of suberoylanilide hydroxamic acid (SAHA) and mitomycin C (MMC) up to 4 months in the prevention of corneal haze induced by photorefractive keratectomy (PRK) in rabbits in vivo.

Concepts: In vivo, Carbonyl, Vorinostat, Hydroxamic acid, Hydroxamic acids, Photorefractive keratectomy, Phototherapeutic keratectomy


Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, has preclinical efficacy in hepatocellular carcinoma (HCC), despite an unclear molecular mechanism. We sought to further investigate the effects of SAHA on HCC. We hypothesize SAHA will inhibit HCC cellular proliferation through apoptosis and aid in further profiling SAHA’s effect on HCC oncogenic pathways.

Concepts: Cancer, Histone deacetylase, Effectiveness, Vorinostat, Histone deacetylase inhibitor, Trichostatin A, Hydroxamic acid, Hydroxamic acids


With the aim of finding more potential inhibitors against NADH-fumarate reductase (specific target for treating helminthiasis and cancer) from natural resources, Talaromyces wortmannii was treated with the epigenome regulatory agent suberoylanilide hydroxamic acid, which resulted in the isolation of four new wortmannilactones derivatives (wortmannilactones I-L, 1-4). The structures of these new compounds were elucidated based on IR, HRESIMS and NMR spectroscopic data analyses. These four new compounds showed potent inhibitory activity against NADH-fumarate reductase with the IC50 values ranging from 0.84 to 1.35μM.

Concepts: Proton, Culture, Vorinostat, The Culture, Hydroxamic acid, Hydroxamic acids, Resource


When integrating molecularly targeted compounds in radiotherapy, synergistic effects of the systemic agent and radiation may extend the limits of patient tolerance, increasing the demand for understanding the pathophysiological mechanisms of treatment toxicity. In this Pelvic Radiation and Vorinostat (PRAVO) study, we investigated mechanisms of adverse effects in response to the histone deacetylase (HDAC) inhibitor vorinostat (suberoylanilide hydroxamic acid; SAHA) when administered as a potential radiosensitiser.

Concepts: Histone deacetylase, Vorinostat, Histone deacetylase inhibitor, HDAC1, Trichostatin A, Hydroxamic acid, Hydroxamic acids


Recently, anti-tumourigenic effects of all-trans-retinoic-acid (ATRA) on glioblastoma stem cells were demonstrated. Therefore we investigated if these beneficial effects could be enhanced by co-medication with epigenetic drugs such as the histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) or the DNA-methyltransferase inhibitor 5-aza-2'deoxycytidine (5-AZA).

Concepts: Histone, Histone deacetylase, Acetylation, Vorinostat, Histone deacetylase inhibitor, Trichostatin A, Hydroxamic acid, Hydroxamic acids


Combination therapy is a key strategy for minimizing drug resistance, a common problem in cancer therapy. The microtubule-depolymerizing agent vincristine is widely used in the treatment of acute leukemia. In order to decrease toxicity and chemoresistance of vincristine, this study will investigate the effects of combination vincristine and vorinostat (suberoylanilide hydroxamic acid (SAHA)), a pan-histone deacetylase inhibitor, on human acute T cell lymphoblastic leukemia cells.

Concepts: Histone deacetylase, In vivo, Leukemia, In vitro, Acute lymphoblastic leukemia, Vorinostat, Hydroxamic acid, Hydroxamic acids


Autophagy enables cells to digest endogenous/exogenous waste products, thus potentially prolonging the cellular lifespan. Early endothelial progenitor cells (eEPCs) protect mice from ischemic acute kidney injury (AKI). The mid-term prognosis in AKI critically depends on vascular rarefication and interstitial fibrosis with the latter partly being induced by mesenchymal transdifferentiation of endothelial cells (EndoMT). This study aimed to determine the impact of eEPC preconditioning with different autophagy inducing agents [suberoylanilide hydroxamic acid (SAHA)/temsirolimus] in ischemic AKI.

Concepts: Protein, Blood vessel, Endothelial progenitor cell, Endothelium, Vorinostat, Hydroxamic acid, Hydroxamic acids