SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Hydrogen

170

Studies of the interaction between hydrogen and graphene have been increasingly required due to the indispensable modulation of the electronic structure of graphene for device applications and the possibility of using graphene as a hydrogen storage material. Here, we report on the behaviour of molecular hydrogen on graphene using the gate voltage-dependent resistance of single-, bi-, and multi-layer graphene sheets as a function of H(2) gas pressure up to 24 bar from 300 K to 345 K. Upon H(2) exposure, the charge neutrality point shifts toward the negative gate voltage region, indicating n-type doping, and distinct Raman signature changes, increases in the interlayer distance of multi-layer graphene, and a decrease in the d-spacing occur, as determined by TEM. These results demonstrate the occurrence of dissociative H(2) adsorption due to the existence of vacancy defects on graphene.

Concepts: Oxygen, Hydrogen, Catalysis, Atom, Pressure, Gas, Liquid hydrogen, Hydrogen storage

170

The alternate sigma factor sigH of Mycobacterium tuberculosis is expressed under stress and acts as a major regulator of several genes, including some other sigma factors and redox systems. While it is auto-regulated by its own promoter at the transcriptional level, its regulation at the post-translational level is through its cognate protein, an anti-sigma factor, RshA. Hither before RshA was believed to be a zinc-associated anti-sigma factor (ZAS) and the binding of RshA to SigH is redox dependent. Here, we show that RshA coordinates a [2Fe-2S] cluster using cysteines as ligands and native RshA has more affinity to [2Fe-2S] cluster than to zinc. Furthermore, we used amide hydrogen deuterium exchange mass spectrometry (HDX-MS), followed by site-directed mutagenesis in SigH and RshA, to elucidate the interaction mechanism of RshA and SigH and the potential role of metal ion clustering in SigH regulation. Three regions in SigH, comprising of residues 1-25, 58-69, 90-111, 115-132 and 157-196 and residues 35-57 of RshA show decreased deuterium exchange and reflect decreased solvent accessibility upon complexation with SigH. Of the three RshA mutants, created based on the HDX results, the RsHA E37A mutant shows stronger interaction with SigH, relative to WT RshA, while the H49A mutant abolishes interactions and the C(53)XXC(56)AXXA mutant has no effect on complexation with SigH. The D22A, D160A and E162 SigH mutants show significantly decreased binding to RshA and the E168A mutant completely abolished interactions with RshA, indicating that the SigH-RshA interaction is mediated by salt bridges. In addition, SigH-RshA interaction does not require clustering of metal ions. Based on our results, we propose a molecular model of the SigH-RshA interaction.

Concepts: Gene, Gene expression, Mass spectrometry, Hydrogen, Atom, Metal, Zinc, Sigma factor

170

Polymethylmethacrylate bone cement cannot provide an adhesive chemical bonding to form a stable cement-bone interface. Bioactive bone cements show bone bonding ability, but their clinical application is limited because bone resorption is observed after implantation. Porous polymethylmethacrylate can be achieved with the addition of carboxymethylcellulose, alginate and gelatin microparticles to promote bone ingrowth, but the mechanical properties are too low to be used in orthopedic applications. Bone ingrowth into cement could decrease the possibility of bone resorption and promote the formation of a stable interface. However, scarce literature is reported on bioactive bone cements that allow bone ingrowth. In this paper, we reported a porous surface modified bioactive bone cement with desired mechanical properties, which could allow for bone ingrowth.

Concepts: Bone, Hydrogen, Molecule, Orthopedic surgery, Chemical compound, Portland cement, Cement

170

Macrophyte decomposition is important for carbon and nutrient cycling in lake ecosystems. Currently, little is known about how this process responds to detritus quality and water nutrient conditions in eutrophic shallow lakes in which incomplete decomposition of detritus accelerates the lake terrestrialization process. In this study, we investigated the effects of detritus quality and water nutrient concentrations on macrophyte decomposition in Lake Baiyangdian, China, by analyzing the decomposition of three major aquatic plants at three sites with different pollution intensities (low, medium, and high pollution sites). Detritus quality refers to detritus nutrient contents as well as C:N, C:P, and N:P mass ratios in this study. Effects of detritus mixtures were tested by combining pairs of representative macrophytes at ratios of 75:25, 50:50 and 25:75 (mass basis). The results indicate that the influence of species types on decomposition was stronger than that of site conditions. Correlation analysis showed that mass losses at the end of the experimental period were significantly controlled by initial detritus chemistry, especially by the initial phosphorus (P) content, carbon to nitrogen (C:N), and carbon to phosphorus (C:P) mass ratios in the detritus. The decomposition processes were also influenced by water chemistry. The NO(3)-N and NH(4)-N concentrations in the lake water retarded detritus mass loss at the low and high pollution sites, respectively. Net P mineralization in detritus was observed at all sites and detritus P release at the high pollution site was slower than at the other two sites. Nonadditive effects of mixtures tended to be species specific due to the different nutrient contents in each species. Results suggest that the nonadditive effects varied significantly among different sites, indicating that interactions between the detritus quality in species mixtures and site water chemistry may be another driver controlling decomposition in eutrophic shallow lakes.

Concepts: Oxygen, Plant, Lake, Eutrophication, Hydrogen, Water pollution, Nitrogen, Lakes

169

The aim of this study was to examine the effect of ACS14, a hydrogen sulfide (H(2)S)-releasing derivative of aspirin (Asp), on Asp-induced gastric injury. Gastric hemorrhagic lesions were induced by intragastric administration of Asp (200 mg/kg, suspended in 0.5% carboxymethyl cellulose solutions) in a volume of 1 ml/100 g body weight. ACS14 (1, 5 or 10 mg/kg) was given 30 min before the Asp administration. The total area of gastric erosions, H(2)S concentration and oxidative stress in gastric tissues were measured three hours after administration of Asp. Treatment with Asp (200 mg/kg), but not ACS14 (430 mg/kg, at equimolar doses to 200 mg/kg Asp), for 3 h significantly increased gastric mucosal injury. The damage caused by Asp was reversed by ACS14 at 1-10 mg/kg in a concentration-dependent manner. ACS14 abrogated Asp-induced upregulation of COX-2 expression, but had no effect on the reduced PGE(2) level. ACS14 reversed the decreased H(2)S concentrations and blood flow in the gastric tissue in Asp-treated rats. Moreover, ACS14 attenuated Asp-suppressed superoxide dismutase-1 (SOD-1) expression and GSH activity, suggesting that ACS14 may stimulate antioxidants in the gastric tissue. ACS14 also obviously inhibited Asp-induced upregulation of protein expression of oxidases including XOD, p47(phox) and p67(phox). In conclusion, ACS14 protects Asp induced gastric mucosal injury by inhibiting oxidative stress in the gastric tissue.

Concepts: Photosynthesis, Blood, Antioxidant, Hydrogen, Redox, Oxidative stress, Electrochemistry, Reducing agent

168

Bioenergy will be one component of a suite of alternatives to fossil fuels. Effective conversion of biomass to energy will require the careful pairing of advanced conversion technologies with biomass feedstocks optimized for the purpose. Lignocellulosic biomass can be converted to useful energy products via two distinct pathways: enzymatic or thermochemical conversion. The thermochemical pathways are reviewed and potential biotechnology or breeding targets to improve feedstocks for pyrolysis, gasification, and combustion are identified. Biomass traits influencing the effectiveness of the thermochemical process (cell wall composition, mineral and moisture content) differ from those important for enzymatic conversion and so properties are discussed in the language of biologists (biochemical analysis) as well as that of engineers (proximate and ultimate analysis). We discuss the genetic control, potential environmental influence, and consequences of modification of these traits. Improving feedstocks for thermochemical conversion can be accomplished by the optimization of lignin levels, and the reduction of ash and moisture content. We suggest that ultimate analysis and associated properties such as H:C, O:C, and heating value might be more amenable than traditional biochemical analysis to the high-throughput necessary for the phenotyping of large plant populations. Expanding our knowledge of these biomass traits will play a critical role in the utilization of biomass for energy production globally, and add to our understanding of how plants tailor their composition with their environment.

Concepts: Metabolism, Hydrogen, Petroleum, Cell wall, Biofuel, Combustion, Biomass, Pyrolysis

168

This work is aimed to evaluate a method to detect the residual magnetic nanoparticles (MNPs) in animal tissues. Ferric ions released from MNPs through acidification with hydrochloric acid can be measured by complexation with potassium thiocyanate. MNPs in saline could be well detected by this chemical colorimetric method, whereas the detected sensitivity decreased significantly when MNPs were mixed with mouse tissue homogenates. In order to check the MNPs in animal tissues accurately, three improvements have been made. Firstly, proteinase K was used to digest the proteins that might bind with iron, and secondly, ferrosoferric oxide (Fe3O4) was collected by a magnetic field which could capture MNPs and leave the bio-iron in the supernatant. Finally, the collected MNPs were carbonized in the muffle furnace at 420[degree sign]C before acidification to ruin the groups that might bind with ferric ions such as porphyrin. Using this method, MNPs in animal tissues could be well measured while avoiding the disturbance of endogenous iron and iron-binding groups.

Concepts: Magnetic field, Hydrogen, Magnetism, Sodium chloride, PH, Chlorine, Magnetite, Ferric

168

Tween 80 (polysorbate 80) has been used as a reducing agent and protecting agent to prepare stable water-soluble silver nanoparticles on a large scale through a one-pot process, which is simple and environmentally friendly. Silver ions can accelerate the oxidation of Tween 80 and then get reduced in the reaction process. The well-ordered arrays such as ribbon-like silver nanostructures could be obtained by adjusting the reaction conditions. High-resolution transmission electron microscopy confirms that ribbon-like silver nanostructures (approximately 50 nm in length and approximately 2 mum in width) are composed of a large number of silver nanocrystals with a size range of 2 to 3 nm. In addition, negative absorbance around 320 nm in the UV-visible spectra of silver nanoparticles has been observed, probably owing to the instability of nanosized silver colloids.

Concepts: Electron, Hydrogen, Redox, Oxidizing agent, Nanotechnology, Reducing agent, Polysorbate 80, Polysorbate

168

A combined ligand and structure-based drug design approach provides a synergistic advantage over either methods performed individually. Present work bestows a good assembly of ligand and structure-based pharmacophore generation concept. Ligand-oriented study was accomplished by employing the HypoGen module of Catalyst in which we have translated the experimental findings into 3-D pharmacophore models by identifying key features (four point pharmacophore) necessary for interaction of the inhibitors with the active site of HIV-1 protease enzyme using a training set of 33 compounds belonging to the cyclic cyanoguanidines and cyclic urea derivatives. The most predictive pharmacophore model (hypothesis 1), consisting of four features, namely, two hydrogen bond acceptors and two hydrophobic, showed a correlation ® of 0.90 and a root mean square of 0.71 and cost difference of 56.59 bits between null cost and fixed cost. The model was validated using CatScramble technique, internal and external test set prediction. In the second phase of our study, a structure-based five feature pharmacophore hypothesis was generated which signifies the importance of hydrogen bond donor, hydrogen bond acceptors and hydrophobic interaction between the HIV-1 protease enzyme and its inhibitors. This work has taken a significant step towards the full integration of ligand and structure-based drug design methodologies as pharmacophoric features retrieved from structure-based strategy complemented the features from ligand-based study hence proving the accuracy of the developed models. The ligand-based pharmacophore model was used in virtual screening of Maybridge and NCI compound database resulting in the identification of four structurally diverse druggable compounds with nM activities.

Concepts: HIV, Scientific method, Hydrogen, Catalysis, Hydrogen bond, Enzyme inhibitor, Root mean square, Pharmacophore

167

The insulator characteristic of hexagonal boron nitride limits its applications in microelectronics. In this paper, the fluorinated hexagonal boron nitride nanosheets were prepared by doping fluorine into the boron nitride nanosheets exfoliated from the bulk boron nitride in isopropanol via a facile chemical solution method with fluoboric acid; interestingly, these boron nitride nanosheets demonstrate a typical semiconductor characteristic which were studied on a new scanning tunneling microscope-transmission electron microscope holder. Since this property changes from an insulator to a semiconductor of the boron nitride, these nanosheets will be able to extend their applications in designing and fabricating electronic nanodevices.

Concepts: Electron, Electron microscope, Hydrogen, Chemistry, Semiconductor, Electrical conductivity, Boron, Boron nitride