SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Hydroelectricity

439

A number of analyses, meta-analyses, and assessments, including those performed by the Intergovernmental Panel on Climate Change, the National Oceanic and Atmospheric Administration, the National Renewable Energy Laboratory, and the International Energy Agency, have concluded that deployment of a diverse portfolio of clean energy technologies makes a transition to a low-carbon-emission energy system both more feasible and less costly than other pathways. In contrast, Jacobson et al. [Jacobson MZ, Delucchi MA, Cameron MA, Frew BA (2015) Proc Natl Acad Sci USA 112(49):15060-15065] argue that it is feasible to provide “low-cost solutions to the grid reliability problem with 100% penetration of WWS [wind, water and solar power] across all energy sectors in the continental United States between 2050 and 2055”, with only electricity and hydrogen as energy carriers. In this paper, we evaluate that study and find significant shortcomings in the analysis. In particular, we point out that this work used invalid modeling tools, contained modeling errors, and made implausible and inadequately supported assumptions. Policy makers should treat with caution any visions of a rapid, reliable, and low-cost transition to entire energy systems that relies almost exclusively on wind, solar, and hydroelectric power.

Concepts: Petroleum, Fossil fuel, Renewable energy, Solar energy, Wind power, Hydroelectricity, International Energy Agency, Pumped-storage hydroelectricity

206

About 50% of the solar energy absorbed at the Earth’s surface drives evaporation, fueling the water cycle that affects various renewable energy resources, such as wind and hydropower. Recent advances demonstrate our nascent ability to convert evaporation energy into work, yet there is little understanding about the potential of this resource. Here we study the energy available from natural evaporation to predict the potential of this ubiquitous resource. We find that natural evaporation from open water surfaces could provide power densities comparable to current wind and solar technologies while cutting evaporative water losses by nearly half. We estimate up to 325 GW of power is potentially available in the United States. Strikingly, water’s large heat capacity is sufficient to control power output by storing excess energy when demand is low, thus reducing intermittency and improving reliability. Our findings motivate the improvement of materials and devices that convert energy from evaporation.The evaporation of water represents an alternative source of renewable energy. Building on previous models of evaporation, Cavusoglu et al. show that the power available from this natural resource is comparable to wind and solar power, yet it does not suffer as much from varying weather conditions.

Concepts: Energy, Water, Earth, Renewable energy, Solar energy, Wind power, Evaporation, Hydroelectricity

148

Assessing the probability of very low or high water levels is an important issue in the management of hydroelectric dams. In the case of the Akosombo dam, very low and high water levels result in load shedding of electrical power and flooding in communities downstream respectively. In this paper, we use extreme value theory to estimate the probability and return period of very low water levels that can result in load shedding or a complete shutdown of the dam’s operations. In addition, we assess the probability and return period of high water levels near the height of the dam and beyond. This provides a framework for a possible extension of the dam to sustain the generation of electrical power and reduce the frequency of spillage that causes flooding in communities downstream. The results show that an extension of the dam can reduce the probability and prolong the return period of a flood. In addition, we found a negligible probability of a complete shutdown of the dam due to inadequate water level.

Concepts: Dam, Flood, Hydroelectricity, Three Gorges Dam, Tidal power, Hydropower

57

This study addresses the greatest concern facing the large-scale integration of wind, water, and solar (WWS) into a power grid: the high cost of avoiding load loss caused by WWS variability and uncertainty. It uses a new grid integration model and finds low-cost, no-load-loss, nonunique solutions to this problem on electrification of all US energy sectors (electricity, transportation, heating/cooling, and industry) while accounting for wind and solar time series data from a 3D global weather model that simulates extreme events and competition among wind turbines for available kinetic energy. Solutions are obtained by prioritizing storage for heat (in soil and water); cold (in ice and water); and electricity (in phase-change materials, pumped hydro, hydropower, and hydrogen), and using demand response. No natural gas, biofuels, nuclear power, or stationary batteries are needed. The resulting 2050-2055 US electricity social cost for a full system is much less than for fossil fuels. These results hold for many conditions, suggesting that low-cost, reliable 100% WWS systems should work many places worldwide.

Concepts: Energy, Petroleum, Fossil fuel, Coal, Solar energy, Wind power, Energy development, Hydroelectricity

36

Rapid adaptive changes can result from the drastic alterations humans impose on ecosystems. For example, flooding large areas for hydroelectric dams converts mountaintops into islands and leaves surviving populations in a new environment. We report differences in morphology and diet of the termite-eating gecko Gymnodactylus amarali between five such newly created islands and five nearby mainland sites located in the Brazilian Cerrado, a biodiversity hotspot. Mean prey size and dietary prey-size breadth were larger on islands than mainlands, expected because four larger lizard species that also consume termites, but presumably prefer larger prey, went extinct on the islands. In addition, island populations had larger heads relative to their body length than mainland populations; larger heads are more suited to the larger prey taken, and disproportionately larger heads allow that functional advantage without an increase in energetic requirements resulting from larger body size. Parallel morphological evolution is strongly suggested, because there are indications that, before flooding, relative head size did not differ between future island and future mainland sites. Females and males showed the same trend of relatively larger heads on islands, so the difference between island and mainland sites is unlikely to be due to greater male-male competition for mates on islands. We thus discovered a very fast (at most 15 y) case of independent parallel adaptive change in response to catastrophic human disturbance.

Concepts: Human, Male, Biodiversity, Diet, Brazil, Dam, Hydroelectricity, Lizard

33

Mega hydropower projects in tropical forests pose a major emergent threat to terrestrial and freshwater biodiversity worldwide. Despite the unprecedented number of existing, under-construction and planned hydroelectric dams in lowland tropical forests, long-term effects on biodiversity have yet to be evaluated. We examine how medium and large-bodied assemblages of terrestrial and arboreal vertebrates (including 35 mammal, bird and tortoise species) responded to the drastic 26-year post-isolation history of archipelagic alteration in landscape structure and habitat quality in a major hydroelectric reservoir of Central Amazonia. The Balbina Hydroelectric Dam inundated 3,129 km2 of primary forests, simultaneously isolating 3,546 land-bridge islands. We conducted intensive biodiversity surveys at 37 of those islands and three adjacent continuous forests using a combination of four survey techniques, and detected strong forest habitat area effects in explaining patterns of vertebrate extinction. Beyond clear area effects, edge-mediated surface fire disturbance was the most important additional driver of species loss, particularly in islands smaller than 10 ha. Based on species-area models, we predict that only 0.7% of all islands now harbor a species-rich vertebrate assemblage consisting of ≥80% of all species. We highlight the colossal erosion in vertebrate diversity driven by a man-made dam and show that the biodiversity impacts of mega dams in lowland tropical forest regions have been severely overlooked. The geopolitical strategy to deploy many more large hydropower infrastructure projects in regions like lowland Amazonia should be urgently reassessed, and we strongly advise that long-term biodiversity impacts should be explicitly included in pre-approval environmental impact assessments.

Concepts: Forest, Brazil, Tropical rainforest, Dam, Hydroelectricity, Three Gorges Dam, Dinosaur, Water wheel

29

The Endangered Species Act requires actions that improve the passage and survival rates for migrating salmonoids and other fish species that sustain injury and mortality when passing through hydroelectric dams. To develop a low-cost revolutionary acoustic transmitter that may be injected instead of surgically implanted into the fish, one major challenge that needs to be addressed is the micro-battery power source. This work focuses on the design and fabrication of micro-batteries for injectable fish tags. High pulse current and required service life have both been achieved as well as doubling the gravimetric energy density of the battery. The newly designed micro-batteries have intrinsically low impedance, leading to significantly improved electrochemical performances at low temperatures as compared with commercial SR416 batteries. Successful field trial by using the micro-battery powered transmitters injected into fish has been demonstrated, providing an exemplary model of transferring fundamental research into practical devices with controlled qualities.

Concepts: Biodiversity, Energy, Density, Endangered species, Salmon, Energy density, Hydroelectricity, Endangered Species Act

29

Indian Himalayan basins are earmarked for widespread dam building, but aggregate effects of these dams on terrestrial ecosystems are unknown. We mapped distribution of 292 dams (under construction and proposed) and projected effects of these dams on terrestrial ecosystems under different scenarios of land-cover loss. We analyzed land-cover data of the Himalayan valleys, where dams are located. We estimated dam density on fifth- through seventh-order rivers and compared these estimates with current global figures. We used a species-area relation model (SAR) to predict short- and long-term species extinctions driven by deforestation. We used scatter plots and correlation studies to analyze distribution patterns of species and dams and to reveal potential overlap between species-rich areas and dam sites. We investigated effects of disturbance on community structure of undisturbed forests. Nearly 90% of Indian Himalayan valleys would be affected by dam building and 27% of these dams would affect dense forests. Our model projected that 54,117 ha of forests would be submerged and 114,361 ha would be damaged by dam-related activities. A dam density of 0.3247/1000 km(2) would be nearly 62 times greater than current average global figures; the average of 1 dam for every 32 km of river channel would be 1.5 times higher than figures reported for U.S. rivers. Our results show that most dams would be located in species-rich areas of the Himalaya. The SAR model projected that by 2025, deforestation due to dam building would likely result in extinction of 22 angiosperm and 7 vertebrate taxa. Disturbance due to dam building would likely reduce tree species richness by 35%, tree density by 42%, and tree basal cover by 30% in dense forests. These results, combined with relatively weak national environmental impact assessment and implementation, point toward significant loss of species if all proposed dams in the Indian Himalaya are constructed. Efectos Potenciales del Desarrollo Hidroeléctrico Actual y Propuesto sobre la Diversidad Biológica Terrestre en el Himalaya Hindú

Concepts: Biodiversity, River, Extinction, Dam, Impact assessment, Hydroelectricity, Himalayas, Environmental impact assessment

28

In times of dwindling fossil fuels it is particularly crucial to develop novel “green” technologies in order to cover the increasing worldwide demand for energy. Organic photovoltaic solar cells (OPVs) are promising as a renewable energy source due to low energy requirement for production, low resource extraction, and no emission of greenhouse gasses during use. In contrast to silicium-based solar cells, OPVs offer the advantages of light-weight, semi-transparency and mechanical flexibility. As to a possible forthcoming large-scale production, the environmental impact of such OPVs should be assessed and compared to currently best available technologies. For the first time, this review compiles the existing knowledge and identifies gaps regarding the environmental impact of such OPVs in a systematic manner. In this regard, we discuss the components of a typical OPV layer by layer. We discuss the probability of enhanced release of OPV-borne components into the environment during use-phase (e.g. UV- and biodegradation) and end-of-life phase (e.g. incineration and waste disposal). For this purpose, we compiled available data on bioavailability, bioaccumulation, biodegradation, and ecotoxicity. Whereas considerable research has already been carried out concerning the ecotoxicity of certain OPV components (e.g. nanoparticles and fullerenes), others have not been investigated at all so far. In conclusion, there is a general lack of information about fate, behavior as well as potential ecotoxicity of most of the main OPV components and their degradation/transformation products. So far, there is no evidence for a worrying threat coming from OPVs, but since at present, no policy and procedures regarding recycling of OPVs are in action, in particular improper disposal upon end-of-life might result in an adverse effect of OPVs in the environment when applied in large-scale.

Concepts: Energy, Environment, Solar cell, Photovoltaics, Fossil fuel, Renewable energy, Wind power, Hydroelectricity

24

More than a hundred hydropower dams have already been built in the Amazon basin and numerous proposals for further dam constructions are under consideration. The accumulated negative environmental effects of existing dams and proposed dams, if constructed, will trigger massive hydrophysical and biotic disturbances that will affect the Amazon basin’s floodplains, estuary and sediment plume. We introduce a Dam Environmental Vulnerability Index to quantify the current and potential impacts of dams in the basin. The scale of foreseeable environmental degradation indicates the need for collective action among nations and states to avoid cumulative, far-reaching impacts. We suggest institutional innovations to assess and avoid the likely impoverishment of Amazon rivers.

Concepts: River, Stream, Amazon River, Environmental science, Dam, Flood, Hydroelectricity, Watermill