Discover the most talked about and latest scientific content & concepts.

Concept: Hybrid


Understanding why some hybrid zones are bimodal and others unimodal can aid in identifying barriers to gene exchange following secondary contact. The hybrid zone between the grasshoppers Chorthippus brunneus and C. jacobsi contains a mix of allopatric parental populations and inter-mingled bimodal and unimodal sympatric populations, and provides an ideal system to examine the roles of local selection and gene flow between populations in maintaining bimodality. However, it is first necessary to confirm, over a larger spatial scale, previously identified associations between population composition and season and habitat. Here we use cline-fitting of one morphological and one song trait along two valley transects, and intervening mountains, to confirm previously identified habitat associations (mountain versus valley) and seasonal changes in population composition. As expected from previous findings of studies on a smaller spatial scale, C. jacobsi dominated mountain habitats and mixed populations dominated valleys, and C. brunneus became more prevalent in August. Controlling for habitat and incorporating into the analysis seasonal changes in cline parameters and the standard errors of parental trait values revealed wider clines than previous studies (best estimates of 6.4 to 24.5 km in our study versus 2.8 to 4.7 km in previous studies) and increased percentage of trait variance explained (52.7% and 61.5% for transects 1 and 2 respectively, versus 17.6%). Revealing such strong and consistent patterns within a complex hybrid zone will allow more focused examination of the causes of variation in bimodality in mixed populations, in particular the roles of local selection versus habitat heterogeneity and gene flow between differentiated populations.

Concepts: Grasshoppers, Chorthippus brunneus, Season, Hybrid, Allopatric speciation, Chorthippus, Speciation, Hybrid zone


Both social environment and genetic factors are critical for smoking initiation and nicotine addiction. We reported that rats developed conditioned flavor (i.e., taste and odor) aversion to intravenously self-administered (IVSA) nicotine, and that social learning promoted nicotine IVSA with flavor cues. We thus tested the hypothesis that socially acquired nicotine IVSA is a heritable trait by using female rats of six inbred strains and six F1 hybrids. Each strain was tested for 10 daily IVSA sessions. We found that the intake of nicotine (15 and 30 μg/kg/inf) varied among these strains by 33.7-56.6-fold. The heritability of nicotine intake was estimated to be 0.54-0.65. Further, there was a strong correlation in nicotine intake (R(2) = 0.85, p < 0.0001) between the two nicotine doses. Another cohort of rats was given three daily IVSA sessions followed by five sessions that tested conditioned flavor aversion. Nicotine intake was highly correlated with the extinction of the conditioned aversion (R(2) = 0.58, p < 0.005). These data showed that nicotine intake in the socially acquired nicotine self-administration model is controlled by genetic factors and that the role of social learning is likely in facilitating the extinction of conditioned aversive response to nicotine.

Concepts: Hybrid, Breeding, Olfaction, Heritability of IQ, Twin study, Heredity, Heritability, Genetics


BACKGROUND: The aim of the present study was to document our recent experience in managing horseshoe fistula of cryptoglandular origin with a modification of the Hanley procedure using a hybrid elastic one-stage cutting seton. METHODS: Surgical outcomes of the modified Hanley procedure for horseshoe fistulae using a seton from 2004 through 2010 were analyzed. The seton fashioned from a surgical glove was tied around the sphincter under less tension than a traditional cutting seton, hence the definition of “hybrid seton”. In addition to excision of the superficial segments of the lateral tracts, deeper extensions into the ischiorectal spaces were curetted, and Penrose drains were placed. RESULTS: All of the patients were discharged on the first postoperative day. None required readmission or needed narcotic analgesics after discharge. Complete healing was achieved in all 21 cases at 8.0 ± 3.22 weeks postoperatively. Patients were able to return to regular work activity in 3.5 ± 1 weeks. The postoperative Cleveland Clinic Incontinence Score did not differ significantly from the preoperative score (p = 0.317, Wilcoxon’s test). Recurrent fistula was noted in a single patient (4.8 %) after a mean follow-up of 20.9-months. CONCLUSIONS: The use of the hybrid elastic seton is a useful and safe additional modification for the treatment of horseshoe fistulae with the Hanley technique.

Concepts: Anal fistula, Surgery, Patient, Hybrid, Seton stitch, Hospital, Fistula


A simple solution-processing method was employed to fabricate panchromatic mp-TiO2/CH3NH3PbI3/P3HT-MWNT/Au solar cells. MWNTs in a P3HT-MWNT composite acted as efficient nanostructured charge transport tunnels and induce crystallization of P3HT, hence significantly enhancing the conductivity of the composite. The fill factor of the hybrid solar cells was greatly enhanced by 26.7%.

Concepts: Electric vehicle, Internal combustion engine, Hybrid, P-n junction, Petroleum, Fill factor, Photovoltaics, Solar cell


We report two methods for linkage disequilibrium mapping that involve incorporation of covariates through parametric modeling to utilize combined case-parent trios and unrelated case and/or control data. The proposed two combined methods were used to map the disease locus of hypertension in the angiotensin-converting enzyme (ACE) gene with incorporation of ACE activity. The efficiencies in estimating the disease locus increased by 351- and 100-fold in the hybrid study with respect to the two proposed methods when compared to the estimates from the trios study; and they changed by 1.4- and 0.4-fold, respectively, when compared to the case-control study. Efficiency of disease locus estimates was greatly improved in both simulations and hypertension studies based on the hybrid data, compared to case-parent trio studies only. These newly developed methods preserve the advantages of the previous methods, including flexible modeling and assessment of gene-gene and gene-covariate effects, while providing more power by using all the data combined. The computing program for analysis using the separate and hybrid data sets is freely available on the author’s website.

Concepts: Experimental design, Case-control study, Trio, Hybrid, Genetic linkage, Epidemiology, Gene, Linkage disequilibrium


On-demand release of bioactive substances with high spatial and temporal control offers ground-breaking possibilities in the field of life sciences. However, available strategies for developing such release systems lack the possibility of combining efficient control over release with adequate storage capability in a reasonably compact system. In this study we present a new approach to target this deficiency by the introduction of a hybrid material. This organic-inorganic material was fabricated by atomic layer deposition of ZnO into thin films of polyethylene glycol, forming the carrier matrix for the substance to be released. Sub-surface growth mechanisms during this process converted the liquid polymer into a solid, yet water-soluble, phase. This layer permits extended storage for various substances within a single film of only a few micrometers in thickness, and hence demands minimal space and complexity. Improved control over release of the model substance Fluorescein was achieved by coating the hybrid material with a conducting polymer film. Single dosage and repetitive dispensing from this system was demonstrated. Release was controlled by applying a bias potential of ±0.5 V to the polymer film enabling or respectively suppressing the expulsion of the model drug. In vitro tests showed excellent biocompatibility of the presented system.

Concepts: Release, Layer, Control, Hybrid, Plastic, Chemical substance, Polymer, Polymers


Progress within the field of biofabrication is hindered by a lack of suitable hydrogel formulations. Here, we present a novel approach based on a hybrid printing technique to create cellularized 3D printed constructs. The hybrid bioprinting strategy combines a reinforcing gel for mechanical support with a bioink to provide a cytocompatible environment. In comparison with thermoplastics such as [Formula: see text]-polycaprolactone, the hydrogel-based reinforcing gel platform enables printing at cell-friendly temperatures, targets the bioprinting of softer tissues and allows for improved control over degradation kinetics. We prepared amphiphilic macromonomers based on poloxamer that form hydrolysable, covalently cross-linked polymer networks. Dissolved at a concentration of 28.6%w/w in water, it functions as reinforcing gel, while a 5%w/w gelatin-methacryloyl based gel is utilized as bioink. This strategy allows for the creation of complex structures, where the bioink provides a cytocompatible environment for encapsulated cells. Cell viability of equine chondrocytes encapsulated within printed constructs remained largely unaffected by the printing process. The versatility of the system is further demonstrated by the ability to tune the stiffness of printed constructs between 138 and 263 kPa, as well as to tailor the degradation kinetics of the reinforcing gel from several weeks up to more than a year.

Concepts: Reinforcement, Hybrid, Lithography, Old master print, Printmaking, Inkjet printer, Printing


Two lines of Zea mays were developed as a short-generation model for maize. The Fast-Flowering Mini-Maize lines A and B are robust inbred lines with a significantly shorter generation time, much smaller stature, and better greenhouse adaptation than traditional maize varieties. Five generations a year are typical. Fast-Flowering Mini-Maize is the result of a modified double-cross hybrid between four fast flowering lines: Neuffer’s Early ACR, Alexander’s Early Early Synthetic, Tom Thumb Popcorn, and Gaspe Flint, followed by selection for early flowering and desirable morphology throughout an 11 generation selfing regime. Lines A and B were derived from different progeny of the initial hybrid, and crosses between Mini-Maize A and B exhibit heterosis. The ancestry of each genomic region of Mini-Maize A and B was inferred from the four founder populations using genotyping-by-sequencing. Other genetic and genomic tools for these lines include karyotypes for both lines A and B, kernel genetic markers y1 (white endosperm) and R1-scm2 (purple endosperm and embryo) introgressed into Mini-Maize A, and ~24x whole-genome resequencing data for Mini-Maize A.

Concepts: Seed, Italian traditional maize varieties, Population genetics, Model organism, Flower, Hybrid, Genetics, Maize


Sexually antagonistic selection can drive both the evolution of sex chromosomes and speciation itself. The tropical butterfly the African Queen, Danaus chrysippus, shows two such sexually antagonistic phenotypes, the first being sex-linked colour pattern, the second, susceptibility to a male-killing, maternally inherited mollicute, Spiroplasma ixodeti, which causes approximately 100% mortality in male eggs and first instar larvae. Importantly, this mortality is not affected by the infection status of the male parent and the horizontal transmission of Spiroplasma is unknown. In East Africa, male-killing of the Queen is prevalent in a narrow hybrid zone centred on Nairobi. This hybrid zone separates otherwise allopatric subspecies with different colour patterns. Here we show that a neo-W chromosome, a fusion between the W (female) chromosome and an autosome that controls both colour pattern and male-killing, links the two phenotypes thereby driving speciation across the hybrid zone. Studies of the population genetics of the neo-W around Nairobi show that the interaction between colour pattern and male-killer susceptibility restricts gene flow between two subspecies of D. chrysippus Our results demonstrate how a complex interplay between sex, colour pattern, male-killing, and a neo-W chromosome, has set up a genetic ‘sink’ that keeps the two subspecies apart. The association between the neo-W and male-killing thus provides a ‘smoking gun’ for an ongoing speciation process.

Concepts: Hybrid, Male, Genetics, Speciation, Sex, Chromosome, Evolution, Gene


Hybrid vigor or heterosis refers to the superior performance of F1 hybrid plants over their parents. Heterosis is particularly important in the production systems of major crops. Recent studies have suggested that epigenetic regulation such as DNA methylation is involved in heterosis, but the molecular mechanism of heterosis is still unclear. To address the epigenetic contribution to heterosis in Arabidopsis thaliana, we used mutant genes that have roles in DNA methylation. Hybrids between C24 and Columbia-0 (Col) without RNA polymerase IV (Pol IV) or methyltransferase I (MET1) function did not reduce the level of biomass heterosis (as evaluated by rosette diameter). Hybrids with a mutation in decrease in dna methylation 1 (ddm1) showed a decreased heterosis level. Vegetative heterosis in the ddm1 mutant hybrid was reduced but not eliminated; a complete reduction could result if there was a change in methylation at all loci critical for generating the level of heterosis, whereas if only a proportion of the loci have methylation changes there may only be a partial reduction in heterosis.

Concepts: Heterosis, Histone, Epigenetics, Hybrid, DNA methylation, Gene, Gene expression, DNA