SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Humus

209

It has been suggested that conversion to organic farming contributes to soil carbon sequestration, but until now a comprehensive quantitative assessment has been lacking. Therefore, datasets from 74 studies from pairwise comparisons of organic vs. nonorganic farming systems were subjected to metaanalysis to identify differences in soil organic carbon (SOC). We found significant differences and higher values for organically farmed soils of 0.18 ± 0.06% points (mean ± 95% confidence interval) for SOC concentrations, 3.50 ± 1.08 Mg C ha(-1) for stocks, and 0.45 ± 0.21 Mg C ha(-1) y(-1) for sequestration rates compared with nonorganic management. Metaregression did not deliver clear results on drivers, but differences in external C inputs and crop rotations seemed important. Restricting the analysis to zero net input organic systems and retaining only the datasets with highest data quality (measured soil bulk densities and external C and N inputs), the mean difference in SOC stocks between the farming systems was still significant (1.98 ± 1.50 Mg C ha(-1)), whereas the difference in sequestration rates became insignificant (0.07 ± 0.08 Mg C ha(-1) y(-1)). Analyzing zero net input systems for all data without this quality requirement revealed significant, positive differences in SOC concentrations and stocks (0.13 ± 0.09% points and 2.16 ± 1.65 Mg C ha(-1), respectively) and insignificant differences for sequestration rates (0.27 ± 0.37 Mg C ha(-1) y(-1)). The data mainly cover top soil and temperate zones, whereas only few data from tropical regions and subsoil horizons exist. Summarizing, this study shows that organic farming has the potential to accumulate soil carbon.

Concepts: Agriculture, Soil, Charcoal, Organic farming, Humus, Input, Crop rotation, Subsoil

149

Previous studies indicated that the quality of tropical composts is poorer than that of composts produced in temperate regions. The aim of this study was to test the type of manure, the use of co-composting with green waste, and the stabilization method for their ability to improve compost quality in the tropics. We produced 68 composts and vermicomposts that were analysed for their C, lignin and NPK contents throughout the composting process. Bayesian networks were used to assess the mechanisms controlling compost quality. The concentration effect, for C and lignin, and the initial blend quality, for NPK content, were the main factors affecting compost quality. Cattle manure composts presented the highest C and lignin contents, and poultry litter composts exhibited the highest NPK content. Co-composting improved quality by enhancing the concentration effect, which reduced the impact of C and nutrient losses. Vermicomposting did not improve compost quality; co-composting without earthworms thus appears to be a suitable stabilization method under the conditions of this study because it produced high quality composts and is easier to implement.

Concepts: Tropics, Bayesian network, Networks, Bayesian probability, Humus, Compost, Composting, Vermicompost

67

Impact ejected rocks are targets for life detection missions to Mars. The Martian subsurface is more favourable to organic preservation than the surface owing to an attenuation of radiation and physical separation from oxidising materials with increasing depth. Impact events bring materials to the surface where they may be accessed without complicated drilling procedures. On Earth, different assemblages of organic matter types are derived from varying depositional environments. Here we assess whether these different types of organic materials can survive impact events without corruption. We subjected four terrestrial organic matter types to elevated pressures and temperatures in piston-cylinder experiments followed by chemical characterisation using whole-rock pyrolysis-gas chromatography-mass spectrometry. Our data reveal that long chain hydrocarbon-dominated organic matter (types I and II; mainly microbial or algal) are unresistant to pressure whereas aromatic hydrocarbon-dominated organic matter types (types III and IV; mainly land plant, metamorphosed or degraded, displaying some superficial chemical similarities to abiotic meteoritic organic matter) are relatively resistant. This suggests that the impact excavated record of potential biology on Mars will be unavoidably biased, with microbial organic matter underrepresented while metamorphosed, degraded or abiotic meteoritic organic matter types will be selectively preserved.

Concepts: Chemistry, Mars, Thermodynamics, Impact event, Humus, Organic matter, Meteorite, Biotic material

60

This study identifies factors affecting the fate of buried objects in soil and develops a method for assessing where preservation of different materials and stratigraphic evidence is more or less likely in the landscape. The results inform the extent of the cultural service that soil supports by preserving artefacts from and information about past societies. They are also relevant to predicting the state of existing and planned buried infrastructure and the persistence of materials spread on land. Soils are variable and preserve different materials and stratigraphic evidence differently. This study identifies the material and soil properties that affect preservation and relates these to soil types; it assesses their preservation capacities for bones, teeth and shells, organic materials, metals (Au, Ag, Cu, Fe, Pb and bronze), ceramics, glass and stratigraphic evidence. Preservation of Au, Pb and ceramics, glass and phytoliths is good in most soils but degradation rates of other materials (e.g. Fe and organic materials) is strongly influenced by soil type. A method is proposed for using data on the distribution of soil types to map the variable preservation capacities of soil for different materials. This is applied at a continental scale across the EU for bones, teeth and shells, organic materials, metals (Cu, bronze and Fe) and stratigraphic evidence. The maps produced demonstrate how soil provides an extensive but variable preservation of buried objects.

Concepts: Soil, Zinc, Copper, Humus, Organic matter, Soil classification

42

Organic farming practices have been promoted as, inter alia, reducing the environmental impacts of agriculture. This meta-analysis systematically analyses published studies that compare environmental impacts of organic and conventional farming in Europe. The results show that organic farming practices generally have positive impacts on the environment per unit of area, but not necessarily per product unit. Organic farms tend to have higher soil organic matter content and lower nutrient losses (nitrogen leaching, nitrous oxide emissions and ammonia emissions) per unit of field area. However, ammonia emissions, nitrogen leaching and nitrous oxide emissions per product unit were higher from organic systems. Organic systems had lower energy requirements, but higher land use, eutrophication potential and acidification potential per product unit. The variation within the results across different studies was wide due to differences in the systems compared and research methods used. The only impacts that were found to differ significantly between the systems were soil organic matter content, nitrogen leaching, nitrous oxide emissions per unit of field area, energy use and land use. Most of the studies that compared biodiversity in organic and conventional farming demonstrated lower environmental impacts from organic farming. The key challenges in conventional farming are to improve soil quality (by versatile crop rotations and additions of organic material), recycle nutrients and enhance and protect biodiversity. In organic farming, the main challenges are to improve the nutrient management and increase yields. In order to reduce the environmental impacts of farming in Europe, research efforts and policies should be targeted to developing farming systems that produce high yields with low negative environmental impacts drawing on techniques from both organic and conventional systems.

Concepts: Agriculture, Soil, Nitrogen, Organic farming, Sustainable agriculture, Humus, Crop rotation, Industrial agriculture

29

The fate of chlortetracycline (CTC), sulfadiazine (SDZ) and ciprofloxacin (CIP) during composting of swine manure and their effect on composting process were investigated. Swine manure was spiked with antibiotics, mixed with saw dust (1:1 on DW basis) and composted for 56d. Antibiotics were spiked to a final concentration of 50mg/kg CTC+10mg/kg SDZ+10mg/kg CIP (High-level) or 5mg/kg CTC+1mg/kg SDZ+1mg/kg CIP (Low-level), and a control without antibiotics. Antibiotics at high concentrations delayed the initial decomposition that also affected the nitrogen mineralization. CTC and SDZ were completely removed from the composting mass within 21 and 3d, respectively; whereas, 17-31% of the spiked CIP remained in the composting mass. Therefore, composting could effectively remove the CTC and SDZ spiked even at high concentrations, but the removal of ciprofloxacin (belonging to fluoroquinolone) needs to be improved, indicating this antibiotic may get into the ecosystem through land application of livestock compost.

Concepts: Agriculture, Fertilizer, Humus, Quinolone, Compost, Composting, Vermicompost, Mulch

28

The time-evolutions of nanoparticle hydrodynamic radius and aggregate fractal dimension during the aggregation of fullerene (C(60)) nanoparticles (FNPs) were measured via simultaneous multiangle static and dynamic light scattering. The FNP aggregation behavior was determined as a function of monovalent (NaCl) and divalent (CaCl(2)) electrolyte concentration, and the impact of addition of dissolved natural organic matter (humic acid) to the solution was also investigated. In the absence of humic acid, the fractal dimension decreased over time with monovalent and divalent salts, suggesting that aggregates become slightly more open and less compact as they grow. Although the aggregates become slightly more open, the magnitude of the fractal dimension suggests intermediate aggregation between the diffusion- and reaction-limited regimes. We observed different aggregation behavior with monovalent and divalent salts upon the addition of humic acid to the solution. For NaCl-induced aggregation, the introduction of humic acid significantly suppressed the aggregation rate of FNPs at NaCl concentrations lower than 150mM. In this case, the aggregation was intermediate or reaction-limited even at NaCl concentrations as high as 500mM, giving rise to aggregates with a fractal dimension of 2.0. For CaCl(2)-induced aggregation, the introduction of humic acid enhanced the aggregation of FNPs at CaCl(2) concentrations greater than about 5mM due to calcium complexation and bridging effects. Humic acid also had an impact on the FNP aggregate structure in the presence of CaCl(2), resulting in a fractal dimension of 1.6 for the diffusion-limited aggregation regime. Our results with CaCl(2) indicate that in the presence of humic acid, FNP aggregates have a more open and loose structure than in the absence of humic acid. The aggregation results presented in this paper have important implications for the transport, chemical reactivity, and toxicity of engineered nanoparticles in aquatic environments.

Concepts: Chemistry, Soil, Aggregate, Aggregate data, Light scattering, Humus, Natural organic matter, Fractal

28

In this study, the efficiency of six ion exchange resins to reduce the dissolved organic matter (DOM) from a biologically treated newsprint mill effluent was evaluated and the dominant removal mechanism of residual organics was established using advanced organic characterisations techniques. Among the resins screened, TAN1 possessed favourable Freundlich parameters, high resin capacity and solute affinity, closely followed by Marathon MSA and Marathon WBA. The removal efficiency of colour and lignin residuals was generally good for the anion exchange resins, greater than 50% and 75% respectively. In terms of the DOM fractions removal measured through liquid chromatography-organic carbon and nitrogen detector (LC-OCND), the resins mainly targeted the removal of humic and fulvic acids of molecular weight ranging between 500 and 1000gmol(-1), the portion expected to contribute the most to the aromaticity of the effluent. For the anion exchange resins, physical adsorption operated along with ion exchange mechanism assisting to remove neutral and transphilic acid fractions of DOM. The column studies confirmed TAN1 being the best of those screened, exhibited the longest mass transfer zone and maximum treatable volume of effluent. The treatable effluent volume with 50% reduction in dissolved organic carbon (DOC) was 4.8 L for TAN1 followed by Marathon MSA - 3.6L, Marathon 11 - 2.0L, 21K-XLT - 1.5L and Marathon WBA - 1.2L. The cation exchange resin G26 was not effective in DOM removal as the maximum DOC removal obtained was only 27%. The resin capacity could not be completely restored for any of the resins; however, a maximum restoration up to 74% and 93% was achieved for TAN1 and Marathon WBA resins. While this feasibility study indicates the potential option of using ion exchange resins for the reclamation of paper mill effluent, the need for improving the regeneration protocols to restore the resin efficiency is also identified. Similarly, care should be taken while employing LC-OCND for characterising resin-treated effluents, as the resin degradation is expected to contribute some organic carbon moieties misleading the actual performance of resin.

Concepts: Hydrogen, Molecule, Chemistry, Atom, Humus, Cation exchange capacity, Water softening, Ion-exchange resin

28

Eco-toxicological or bioassay tests have been intensively discussed as tools for the evaluation of soil quality. Tests using soil organisms, including microarthropods and plants, allow direct estimates to be made of important soil characteristics and functions. In this study we compared the results obtained by two in vitro standard bioassays following ISO or OECD guidelines: (i) the short term-chronic phytotoxicity germination and root elongation test using three different plant species Cucumis sativus L. (Cucurbitaceae), Lepidium sativum L. (Brassicaceae), and Medicago sativa L. (Fabaceae) and (ii) the inhibition of reproduction of Folsomia candida (Collembola) by soil pollutants to investigate the toxicity of a serpentine soil present in the Italian Apennines, rich in heavy metals such as Ni, Cr, and Co. In addition, microarthropod communities were characterised to evaluate the effects of metal contents on the soil fauna in natural conditions. Abundances, Acari/Collembola ratio, biodiversity indices and the QBS-ar index were calculated. Our results demonstrate that the two in vitro tests distinguish differences correlated with metal and organic matter contents in four sub-sites within the serpentinite. Soil fauna characterisation, not previously performed on serpentine soils, revealed differences in the most vulnerable and adapted groups of microarthropods to soil among the four sub-sites: the microarthropod community was found to be rich in term of biodiversity in the sub-site characterised by a lower metal content and a higher organic matter content and vegetation.

Concepts: Plant, Soil, Heavy metal music, Humus, Organic matter, Cannabis sativa, Serpentine group, Serpentine soil

28

To enhance colloidal stability of nano zero-valent iron (NZVI) used for groundwater remediation, the surfaces of such NZVI can be modified via coating with organic stabilizers. These surface stabilizers can electrostatically, sterically, or electrosterically stabilize NZVI suspensions in water, but their efficacy is affected by the presence of humic acid (HA) in groundwater. In this study, the effect of HA on the colloidal stability of NZVI coated with three types of stabilizers (i.e., polyacrylic acid (PAA), Tween-20 and starch) was evaluated. Differing stability behaviors were observed for different surface-modified NZVIs (SM-NZVI) in the presence of HA. Fluorescence spectroscopic analysis probed the possible interactions at the SM-NZVI-HA interface, providing a better understanding of the effect of HA on SM-NZVI stability. The adsorption of HA on the surface of PAA-modified NZVI via complexation with NZVI (rather than the PAA stabilizer) enhanced the electrosteric repulsion effect, increasing the stability of the particles. However, for NZVI modified with Tween-20 or starch, HA could interact with the surface stabilizer and apparently play a “bridge” role among the particles, which might induce aggregation of the particles. Therefore, the stability behavior of NZVI modified with Tween-20 or starch might have resulted from the combined effect of “bridging” and “electrosteric” exerted by HA.

Concepts: Spectroscopy, Water, Stabilizer, Water purification, Colloid, Behavior, Humus, Flocculation