Discover the most talked about and latest scientific content & concepts.

Concept: Human T-lymphotropic virus


Fatality rates of infectious diseases are often higher in men than women. Although this difference is often attributed to a stronger immune response in women, we show that differences in the transmission routes that the sexes provide can result in evolution favouring pathogens with sex-specific virulence. Because women can transmit pathogens during pregnancy, birth or breast-feeding, pathogens adapt, evolving lower virulence in women. This can resolve the long-standing puzzle on progression from Human T-cell Lymphotropic Virus Type 1 (HTLV-1) infection to lethal Adult T-cell Leukaemia (ATL); a progression that is more likely in Japanese men than women, while it is equally likely in Caribbean women and men. We argue that breastfeeding, being more prolonged in Japan than in the Caribbean, may have driven the difference in virulence between the two populations. Our finding signifies the importance of investigating the differences in genetic expression profile of pathogens in males and females.

Concepts: Immune system, Infectious disease, Bacteria, Evolution, Infection, Gender, Human T-lymphotropic virus, Sex


HTLV-1 infection is endemic among people of Melanesian descent in Papua New Guinea, the Solomon Islands and Vanuatu. Molecular studies reveal that these Melanesian strains belong to the highly divergent HTLV-1c subtype. In Australia, HTLV-1 is also endemic among the Indigenous people of central Australia; however, the molecular epidemiology of HTLV-1 infection in this population remains poorly documented.

Concepts: Human T-lymphotropic virus, Pacific Ocean, Australia, Papua New Guinea, Solomon Islands, Melanesia, Elizabeth II of the United Kingdom, Oceania


Prosultiamine, a vitamin B1 derivative, has long been used for beriberi neuropathy and Wernicke’s encephalopathy. Based on the finding that prosultiamine induces apoptosis in human T lymphotropic virus type-I (HTLV-I)-infected T cells, Nakamura et al conducted a clinical trial of prosultiamine in patients with HTLV-I-associated myelopathy (HAM)/tropical spastic paraparesis (TSP). In this open-label, single arm study enrolling 24 HAM/TSP patients recently published in BMC Medicine, oral prosultiamine (300 mg/day for 12 weeks) was found to be effective by neurological, urological and virological evaluations. Notably, it increased detrusor pressure, bladder capacity and maximum flow rate, and improved detrusor overactivity and detrusor-sphincter dyssynergia. A significant decrease in HTLV-I copy numbers in peripheral blood following the treatment provided a rationale for using the drug. The trial has some limitations, such as the small numbers of participants, the open-label design, the lack of a placebo arm, and the short trial period. Nevertheless, the observation that such a safe, cheap drug may have excellent therapeutic effects on HAM/TSP, a chronic devastating illness occurring mainly in developing countries, provides support for future large-scale randomized controlled trials.Please see related research:

Concepts: Medicine, Virus, Vitamin, Human T-lymphotropic virus, Thiamine, Beriberi, Tropical spastic paraparesis, Wernicke-Korsakoff syndrome


Zoonotic transmission of simian retroviruses in West-Central Africa occurring in primate hunters has resulted in pandemic spread of human immunodeficiency viruses (HIVs) and human T-lymphotropic viruses (HTLVs). While simian foamy virus (SFV) and simian T- lymphotropic virus (STLV)-like infection were reported in healthy persons exposed to nonhuman primates (NHPs) in West-Central Africa, less is known about the distribution of these viruses in Western Africa and in hospitalized populations. We serologically screened for SFV and STLV infection using 1,529 specimens collected between 1985 and 1997 from Côte d'Ivoire patients with high HIV prevalence. PCR amplification and analysis of SFV, STLV, and HIV/SIV sequences from PBMCs was used to investigate possible simian origin of infection. We confirmed SFV antibodies in three persons (0.2%), two of whom were HIV-1-infected. SFV polymerase (pol) and LTR sequences were detected in PBMC DNA available for one HIV-infected person. Phylogenetic comparisons with new SFV sequences from African guenons showed infection likely originated from a Chlorocebus sabaeus monkey endemic to Côte d'Ivoire. 4.6% of persons were HTLV seropositive and PCR testing of PBMCs from 15 HTLV seroreactive persons identified nine with HTLV-1 and one with HTLV-2 LTR sequences. Phylogenetic analysis showed that two persons had STLV-1-like infections, seven were HTLV-1, and one was an HTLV-2 infection. 310/858 (53%), 8/858 (0.93%), and 18/858 (2.1%) were HIV-1, HIV-2, and HIV-positive but undifferentiated by serology, respectively. No SIV sequences were found in persons with HIV-2 antibodies (n = 1) or with undifferentiated HIV results (n = 7). We document SFV, STLV-1-like, and dual SFV/HIV infection in Côte d'Ivoire expanding the geographic range for zoonotic simian retrovirus transmission to West Africa. These findings highlight the need to define the public health consequences of these infections. Studying dual HIV-1/SFV infections in immunocompromised populations may provide a new opportunity to better understand SFV pathogenicity and transmissibility in humans.

Concepts: HIV, AIDS, Immune system, DNA, Virus, Human T-lymphotropic virus, Primate, Retrovirus


Human T-lymphotropic virus type 1 (HTLV-1), a retrovirus, is the causative agent of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T-cell leukaemia/lymphoma (ATLL). The reported association with pulmonary disease such as bronchiectasis is less certain.

Concepts: HIV, Disease, Asthma, Virus, Pneumonia, Human T-lymphotropic virus, Retrovirus, Tropical spastic paraparesis


Human T lymphotropic virus type I (HTLV-I)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic myelopathy characterized by motor dysfunction of the lower extremities and urinary disturbance. Immunomodulatory treatments are the main strategy for HAM/TSP, but several issues are associated with long-term treatment. We conducted a clinical trial with prosultiamine (which has apoptotic activity against HTLV-I-infected cells) as a novel therapy in HAM/TSP patients.

Concepts: Medicine, Clinical trial, Virus, Effectiveness,, Human T-lymphotropic virus, Tropical spastic paraparesis


The human T-cell leukemia virus type 1 (HTLV-1), identified as the first human oncogenic retrovirus 30 years ago, is not an ubiquitous virus. HTLV-1 is present throughout the world, with clusters of high endemicity located often nearby areas where the virus is nearly absent. The main HTLV-1 highly endemic regions are the Southwestern part of Japan, sub-Saharan Africa and South America, the Caribbean area, and foci in Middle East and Australo-Melanesia. The origin of this puzzling geographical or rather ethnic repartition is probably linked to a founder effect in some groups with the persistence of a high viral transmission rate. Despite different socio-economic and cultural environments, the HTLV-1 prevalence increases gradually with age, especially among women in all highly endemic areas. The three modes of HTLV-1 transmission are mother to child, sexual transmission, and transmission with contaminated blood products. Twenty years ago, de Thé and Bomford estimated the total number of HTLV-1 carriers to be 10-20 millions people. At that time, large regions had not been investigated, few population-based studies were available and the assays used for HTLV-1 serology were not enough specific. Despite the fact that there is still a lot of data lacking in large areas of the world and that most of the HTLV-1 studies concern only blood donors, pregnant women, or different selected patients or high-risk groups, we shall try based on the most recent data, to revisit the world distribution and the estimates of the number of HTLV-1 infected persons. Our best estimates range from 5-10 millions HTLV-1 infected individuals. However, these results were based on only approximately 1.5 billion of individuals originating from known HTLV-1 endemic areas with reliable available epidemiological data. Correct estimates in other highly populated regions, such as China, India, the Maghreb, and East Africa, is currently not possible, thus, the current number of HTLV-1 carriers is very probably much higher.

Concepts: Epidemiology, Virus, Malaria, Africa, North Africa, Human T-lymphotropic virus, Leukemia, Middle East


Human T-cell leukemia virus type 1 (HTLV-1) was the first human retrovirus discovered. Studies on HTLV-1 have been instrumental for our understanding of the molecular pathology of virus-induced cancers. HTLV-1 is the etiological agent of an adult T-cell leukemia (ATL) and can lead to a variety of neurological pathologies, including HTLV-1-associated-myelopathy/tropical spastic paraparesis (HAM/TSP). The ability to treat the aggressive ATL subtypes remains inadequate. HTLV-1 replicates by (1) an infectious cycle involving virus budding and infection of new permissive target cells and (2) mitotic division of cells harboring an integrated provirus. Virus replication initiates host antiviral immunity and the checkpoint control of cell proliferation, but HTLV-1 has evolved elegant strategies to counteract these host defense mechanisms to allow for virus persistence. The study of the molecular biology of HTLV-1 replication has provided crucial information for understanding HTLV-1 replication as well as aspects of viral replication that are shared between HTLV-1 and human immunodeficiency virus type 1 (HIV-1). Here in this review, we discuss the various stages of the virus replication cycle-both foundational knowledge as well as current updates of ongoing research that is important for understanding HTLV-1 molecular pathogenesis as well as in developing novel therapeutic strategies.

Concepts: HIV, Immune system, DNA, Bacteria, Virus, Pathology, Human T-lymphotropic virus, Retrovirus


Adult T cell leukemia/lymphoma (ATL) is an aggressive cancer of CD4/CD25+ T lymphocytes, the etiological agent of which is human T cell lymphotropic virus 1 (HTLV1). ATL is highly refractory to presently existing therapies, making the development of new treatments a high priority. Oncolytic viruses such as Vesicular Stomatitis Virus (VSV) are presently being considered as anti-cancer agents since they readily infect transformed cells compared to normal cells, the former appearing to exhibit defective innate immune responses. Here, we have evaluated the efficacy and safety of a recombinant VSV that has been retargeted to specifically infect and replicate in transformed CD4+ cells. This was achieved by replacing the single VSV glycoprotein (G) with human immunodeficiency virus (HIV1) gp160, to create a hybrid fusion protein, gp160G. The resultant virus, VSV-gp160G, was found to only target cells expressing CD4 and retained robust oncolytic activity against HTLV-1 actuated ATL cells. VSV-gp160G was further noted to be highly attenuated and did not replicate efficiently in or induce significant cell death of primary CD4+ T cells. Accordingly, VSV-gp160G did not elicit any evidence of neurotoxicity even in severely immunocompromised animals such as NOD/Shi-scid, IL-2γ-c null mice (NSG). Importantly, VSV-gp160G effectively exerted potent oncolytic activity in patient-derived ATL transplanted into NSG mice and facilitated a significant survival benefit. Our data indicates that VSV-gp160G exerts potent oncolytic efficacy against CD4+ malignant cells and either alone or in conjunction with established therapies may provide an effective treatment in patients displaying ATL.

Concepts: Immune system, White blood cell, Microbiology, Natural killer cell, B cell, Human T-lymphotropic virus, Thymus, Vesicular stomatitis virus


To establish infection, a retrovirus must insert a DNA copy of its RNA genome into host chromatin. This reaction is catalysed by the virally encoded enzyme integrase (IN) and is facilitated by viral genus-specific host factors. Herein, cellular serine/threonine protein phosphatase 2A (PP2A) is identified as a functional IN binding partner exclusive to δ-retroviruses, including human T cell lymphotropic virus type 1 and 2 (HTLV-1 and HTLV-2) and bovine leukaemia virus (BLV). PP2A is a heterotrimer composed of a scaffold, catalytic and one of any of four families of regulatory subunits, and the interaction is specific to the B' family of the regulatory subunits. B'-PP2A and HTLV-1 IN display nuclear co-localization, and the B' subunit stimulates concerted strand transfer activity of δ-retroviral INs in vitro. The protein-protein interaction interface maps to a patch of highly conserved residues on B', which when mutated render B' incapable of binding to and stimulating HTLV-1 and -2 IN strand transfer activity.

Concepts: DNA, Protein, Gene, Enzyme, Virus, RNA, Human T-lymphotropic virus, Retrovirus