Discover the most talked about and latest scientific content & concepts.

Concept: Human skin color


The presence of dark melanin (eumelanin) within human epidermis represents one of the strongest predictors of low skin cancer risk. Topical rescue of eumelanin synthesis, previously achieved in “redhaired” Mc1r-deficient mice, demonstrated significant protection against UV damage. However, application of a topical strategy for human skin pigmentation has not been achieved, largely due to the greater barrier function of human epidermis. Salt-inducible kinase (SIK) has been demonstrated to regulate MITF, the master regulator of pigment gene expression, through its effects on CRTC and CREB activity. Here, we describe the development of small-molecule SIK inhibitors that were optimized for human skin penetration, resulting in MITF upregulation and induction of melanogenesis. When topically applied, pigment production was induced in Mc1r-deficient mice and normal human skin. These findings demonstrate a realistic pathway toward UV-independent topical modulation of human skin pigmentation, potentially impacting UV protection and skin cancer risk.

Concepts: DNA, Gene expression, Ultraviolet, Regulation of gene expression, Skin, Melanin, Human skin color, Melanocyte


Pigmentation is a polygenic trait encompassing some of the most visible phenotypic variation observed in humans. Here we present direct estimates of selection acting on functional alleles in three key genes known to be involved in human pigmentation pathways-HERC2, SLC45A2, and TYR-using allele frequency estimates from Eneolithic, Bronze Age, and modern Eastern European samples and forward simulations. Neutrality was overwhelmingly rejected for all alleles studied, with point estimates of selection ranging from around 2-10% per generation. Our results provide direct evidence that strong selection favoring lighter skin, hair, and eye pigmentation has been operating in European populations over the last 5,000 y.

Concepts: Gene, Genetics, Natural selection, Genotype, Evolution, Copper, Human skin color, Eye color


Humans in all societies form and participate in cooperative alliances. To successfully navigate an alliance-laced world, the human mind needs to detect new coalitions and alliances as they emerge, and predict which of many potential alliance categories are currently organizing an interaction. We propose that evolution has equipped the mind with cognitive machinery that is specialized for performing these functions: an alliance detection system. In this view, racial categories do not exist because skin color is perceptually salient; they are constructed and regulated by the alliance system in environments where race predicts social alliances and divisions. Early tests using adversarial alliances showed that the mind spontaneously detects which individuals are cooperating against a common enemy, implicitly assigning people to rival alliance categories based on patterns of cooperation and competition. But is social antagonism necessary to trigger the categorization of people by alliance-that is, do we cognitively link A and B into an alliance category only because they are jointly in conflict with C and D? We report new studies demonstrating that peaceful cooperation can trigger the detection of new coalitional alliances and make race fade in relevance. Alliances did not need to be marked by team colors or other perceptually salient cues. When race did not predict the ongoing alliance structure, behavioral cues about cooperative activities up-regulated categorization by coalition and down-regulated categorization by race, sometimes eliminating it. Alliance cues that sensitively regulated categorization by coalition and race had no effect on categorization by sex, eliminating many alternative explanations for the results. The results support the hypothesis that categorizing people by their race is a reversible product of a cognitive system specialized for detecting alliance categories and regulating their use. Common enemies are not necessary to erase important social boundaries; peaceful cooperation can have the same effect.

Concepts: Psychology, Cognition, Cognitive science, Philosophy of mind, Mind, Thought, Race, Human skin color


Human skin color is predominantly determined by melanin produced in melanosomes within melanocytes and subsequently distributed to keratinocytes. There are many studies that have proposed mechanisms underlying ethnic skin color variations, whereas the processes involved from melanin synthesis in melanocytes to the transfer of melanosomes to keratinocytes are common among humans. Apart from the activities in the melanogenic rate-limiting enzyme, tyrosinase, in melanocytes and the amounts and distribution patterns of melanosomes in keratinocytes, the abilities of the actin-associated factors in charge of melanosome transport within melanocytes also regulate pigmentation. Mutations in genes encoding melanosome transport-related molecules, such as MYO5A, RAB27A and SLAC-2A, have been reported to cause a human pigmentary disease known as Griscelli syndrome, which is associated with diluted skin and hair color. Thus we hypothesized that process might play a role in modulating skin color variations. To address that hypothesis, the correlations of expression of RAB27A and its specific effector, SLAC2-A, to melanogenic ability were evaluated in comparison with tyrosinase, using human melanocytes derived from 19 individuals of varying skin types. Following the finding of the highest correlation in RAB27A expression to the melanogenic ability, darkly-pigmented melanocytes with significantly higher RAB27A expression were found to transfer significantly more melanosomes to keratinocytes than lightly-pigmented melanocytes in co-culture and in human skin substitutes (HSSs) in vivo, resulting in darker skin color in concert with the difference observed in African-descent and Caucasian skins. Additionally, RAB27A knockdown by a lentivirus-derived shRNA in melanocytes concomitantly demonstrated a significantly reduced number of transferred melanosomes to keratinocytes in co-culture and a significantly diminished epidermal melanin content skin color intensity (ΔL* = 4.4) in the HSSs. These data reveal the intrinsically essential role of RAB27A in human ethnic skin color determination and provide new insights for the fundamental understanding of regulatory mechanisms underlying skin pigmentation.

Concepts: Ultraviolet, Skin, Melanin, Race, Human skin color, Melanocyte, Eye color, Human skin


Skin hyperpigmentation is characterized by increased melanin synthesis and deposition that can cause significant psychosocial and psychological distress. Although several cytokine-receptor signaling cascades contribute to the formation of ultraviolet B-induced cutaneous hyperpigmentation, their possible involvement in other types of skin hyperpigmentation has never been clearly addressed. Since our continuous studies using skin specimens from more than 30 subjects with ethnic skin diversity emphasized a consistent augmentation in the expression of endothelin-1 (ET-1) and its receptor (Endothelin B receptor, ET-B) in hyperpigmented lesions, including senile lentigos (SLs), the precise function of ET-1 signaling was investigated in the present study. In line with previous studies, ET-1 significantly induced melanogenesis followed by increases in melanosome transport in melanocytes and in its transfer to keratinocytes while inhibition of ET-B function substantially depressed melanogenic ability in tissue-cultured SLs. Additionally, in agreement with a previous report that the formation of autophagosomes rather than melanosomes is stimulated according to starvation or defective melanosome production, ET-1 was found to remarkably augment the expression of components necessary for early melanosome formation, indicating its counteraction against autophagy-targeting melanosome degradation in melanocytes. Despite the lack of substantial impact of ET-1 on keratinocyte melanogenic functions, the expression of ET-1 was enhanced following melanosome uptake by keratinocytes. Taken together, our data suggest that ET-1 plays a substantial role in the development and/or maintenance of skin hyperpigmentation in reciprocal cooperation with increased melanosome incorporation.

Concepts: Melanoma, Skin, Melanin, Epidermis, Human skin color, Skin anatomy, Melanocyte, Melanosome


We report on ultraviolet (UV) light induced increases in the UV optical density of thin and optically transparent crystalline DNA films formed through self assembly. The films are comprised of closely packed, multi-faceted and sub micron sized crystals. UV-Vis spectrophotometry reveals that DNA films with surface densities up to 0.031 mg/mm(2) can reduce the transmittance of incident UVC and UVB light by up to 90%, and UVA transmittance by up to 20%. Subsequent and independent film irradiation with either UVA or UVB dosages upwards of 80 J/cm(2) both reduce UV transmittance, with reductions scaling monotonically with UV dosage. To date the induction of a hyperchromic effect has been demonstrated using heat, pH, high salt mediums, and high energy ionising radiation. Both hyperchromicity and increased light scattering could account for the increased film optical density after UV irradiation. Additional characterisation of the films reveal they are highly absorbent and hygroscopic. When coated on human skin, they are capable of slowing water evaporation and keeping the tissue hydrated for extended periods of time.

Concepts: Ionizing radiation, Ultraviolet, Optics, Electromagnetic radiation, Optical fiber, Electromagnetic spectrum, Sunlight, Human skin color


Topical oils on baby skin may contribute to development of childhood atopic eczema. A pilot, assessor-blinded, randomized controlled trial assessed feasibility of a definitive trial investigating their impact in neonates. One-hundred and fifteen healthy, full-term neonates were randomly assigned to olive oil, sunflower oil or no oil, twice daily for 4 weeks, stratified by family history of atopic eczema. We measured spectral profile of lipid lamellae, trans-epidermal water loss (TEWL), stratum corneum hydration and pH and recorded clinical observations, at baseline, and 4 weeks post-birth. Recruitment was challenging (recruitment 11.1%; retention 80%), protocol adherence reasonable (79-100%). Both oil groups had significantly improved hydration but significantly less improvement in lipid lamellae structure compared to the no oil group. There were no significant differences in TEWL, pH or erythema/skin scores. The study was not powered for clinical significance, but until further research is conducted, caution should be exercised when recommending oils for neonatal skin.

Concepts: Infant, Water, Randomized controlled trial, Fat, Wax, Human skin color, Toddler, Chrism



UVC light generated by conventional germicidal lamps is a well-established anti-microbial modality, effective against both bacteria and viruses. However, it is a human health hazard, being both carcinogenic and cataractogenic. Earlier studies showed that single-wavelength far-UVC light (207 nm) generated by excimer lamps kills bacteria without apparent harm to human skin tissue in vitro. The biophysical explanation is that, due to its extremely short range in biological material, 207 nm UV light cannot penetrate the human stratum corneum (the outer dead-cell skin layer, thickness 5-20 μm) nor even the cytoplasm of individual human cells. By contrast, 207 nm UV light can penetrate bacteria and viruses because these cells are physically much smaller.

Concepts: DNA, Medicine, Genetics, Human, Ultraviolet, Bacteria, Skin, Human skin color


Intracellular organelles mediate complex cellular functions that often require ion transport across their membranes. Melanosomes are organelles responsible for the synthesis of the major mammalian pigment melanin. Defects in melanin synthesis result in pigmentation defects, visual deficits, and increased susceptibility to skin and eye cancers. Although genes encoding putative melanosomal ion transporters have been identified as key regulators of melanin synthesis, melanosome ion transport and its contribution to pigmentation remain poorly understood. Here we identify two-pore channel 2 (TPC2) as the first reported melanosomal cation conductance by directly patch-clamping skin and eye melanosomes. TPC2 has been implicated in human pigmentation and melanoma, but the molecular mechanism mediating this function was entirely unknown. We demonstrate that the vesicular signaling lipid phosphatidylinositol bisphosphate PI(3,5)P2 modulates TPC2 activity to control melanosomal membrane potential, pH, and regulate pigmentation.

Concepts: Cell, Cell membrane, Sodium, Melanin, Ion channels, Human skin color, Melanocyte, Melanosome