Discover the most talked about and latest scientific content & concepts.

Concept: Hsp27


Heat shock protein (HSP) 27 is related to the pathogenesis of AF. However, the clinical relationship between HSP27 and AF is unclear. The present study was conducted to determine the clinical relationship between HSP27 and atrial fibrillation (AF).

Concepts: Present, Atrial fibrillation, Atrial flutter, Heat shock protein, Hsp27


Heat shock protein 27 (HSP27) also known as heat shock protein β1 (HSPB1) is a member of the family of small heat shock proteins ubiquitously expressed in all tissues. It has previously been demonstrated that HSP27 regulated the synthesis of osteocalcin and interleukin‑6 in osteoblast‑like MC3T3‑E1 cells. In the present study, the effect of HSP27 on basic fibroblast growth factor (FGF‑2)‑stimulated vascular endothelial growth factor (VEGF) synthesis in MC3T3‑E1 cells, was observed. The levels of VEGF release stimulated by FGF‑2 in the HSP27‑overexpressing MC3T3‑E1 cells were significantly lower compared with those in the control cells. In addition, the levels of VEGF release stimulated by FGF-2 in the phosphomimic HSP27-overexpressing cells were significantly higher compared with those in the non‑phosphorylatable HSP27‑overexpressing cells. Furthermore, no significant differences were observed in the FGF‑2‑induced phosphorylation levels of p44/p42 mitogen‑activated protein (MAP) kinase, p38 MAP kinase, stress‑activated protein kinase/c‑Jun N‑terminal kinase (SAPK/JNK) or p70 S6 kinase among the four types of transfected cells. These results suggested that unphosphorylated HSP27 attenuated the FGF‑2‑stimulated VEGF synthesis in osteoblasts.

Concepts: Signal transduction, Angiogenesis, Vascular endothelial growth factor, Fibroblast growth factor, Proteasome, Heat shock protein, Basic fibroblast growth factor, Hsp27


HSPB3 gene encodes a small heat-shock protein 27-like protein which has a high sequence homology with HSPB1. A mutation in the HSPB3 was reported as the putative underlying cause of distal hereditary motor neuropathy 2C (dHMN2C) in 2010. We identified a heterozygous mutation (c.352T>C, p.Tyr118His) in the HSPB3 from a Charcot-Marie-Tooth disease type 2 (CMT2) family by the method of targeted next generation sequencing. The mutation was located in the well conserved alpha-crystalline domain, and several in silico predictions indicated a pathogenic effect of the mutation. Clinical and electrophysiological features of the patients indicated the axonal type of CMT. Clinical symptoms without sensory involvements were similar between the present family and the previous family. Mutations in the HSPB1 and HSPB8 genes have been reported to be relevant with both types of CMT2 and dHMN. Our findings will help in the molecular diagnosis of CMT2 by expanding the phenotypic range due to the HSPB3 mutations.

Concepts: DNA, Gene, Genetics, Evolution, Biology, DNA repair, Heat shock protein, Hsp27


We have recently reported lipopolysaccharide (LPS) pretreatment attenuated renal ischemia/reperfusion injury (IRI), but the exact mechanism remains to be well elucidated. It was reported that heat shock protein (Hsp) 27 was up-regulated after administration of LPS, but whether a direct link existed between Hsp27 up-regulation and LPS-induced protection against renal IRI is still unknown.

Concepts: Lipopolysaccharide, Heat shock protein, Hsp27, Extortion, Protection racket


Small heat shock proteins are molecular chaperones that exert diverse cellular functions. To date, mutations in the coding regions of HSPB1 (Hsp27) and HSPB8 (Hsp22) were reported to cause distal hereditary motor neuropathy and Charcot-Marie-Tooth disease. Recently, the clinical spectrum of HSPB1 and HSPB8 mutations was expanded to also include myopathies. Here we provide an update on the molecular genetics and biology of small heat shock protein mutations in neuromuscular diseases.

Concepts: DNA, Proteins, Gene, Molecular biology, Chaperone, Proteasome, Heat shock protein, Hsp27


Heat shock protein 27 (HSP27/HSPB1), one of the small heat shock proteins, is constitutively expressed in various tissues. HSP27 and its phosphorylation state participate in the regulation of multiple physiological and pathophysiological cell functions. However, the exact roles of HSP27 in osteoblasts remain unclear. In the present study, we investigated the role of HSP27 in the platelet-derived growth factor‑BB (PDGF‑BB)‑stimulated migration of osteoblast-like MC3T3-E1 cells. PDGF-BB by itself barely upregulated the expression of HSP27 protein, but stimulated the phosphorylation of HSP27 in these cells. The PDGF-BB‑induced cell migration was significantly downregulated by HSP27 overexpression. The PDGF-BB-induced migrated cell numbers of the wild‑type HSP27-overexpressing cells and the phospho‑mimic HSP27-overexpressing (3D) cells were less than those of the unphosphorylatable HSP27-overexpressing (3A) cells. PD98059, an inhibitor of MEK1/2, SB203580, an inhibitor of p38 mitogen-activated protein kinase, and SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) reduced the PDGF-BB-induced migration of these cells, whereas Akt inhibitor or rapamycin, an inhibitor of upstream kinase of p70 S6 kinase (mTOR), barely affected the migration. However, the PDGF-BB-induced phosphorylation of p44/p42 MAPΚ, p38 MAPK and SAPK/JNK was not affected by HSP27 overexpression. There were no significant differences in the phosphorylation of p44/p42 MAPΚ, p38 MAP kinase or SAPK/JNK between the 3D cells and the 3A cells. These results strongly suggest that HSP27 functions as a negative regulator in the PDGF-BB-stimulated migration of osteoblasts, and the suppressive effect is amplified by the phosphorylation state of HSP27.

Concepts: DNA, Protein, Gene, Gene expression, Adenosine triphosphate, Enzyme, Heat shock protein, Hsp27


The holdase activity and oligomeric propensity of human small heat shock proteins (sHSPs) are regulated by environmental factors. However, atomic-level details are lacking for the mechanisms by which stressors alter sHSP responses. We previously demonstrated that regulation of HSPB5 is mediated by a single conserved histidine over a physiologically relevant pH range of 6.5-7.5. Here, we demonstrate that HSPB1 responds to pH via a similar mechanism through pH-dependent structural changes that are induced via protonation of the structurally analogous histidine. Results presented here show that acquisition of a positive charge, either by protonation of His124 or its substitution by lysine, reduces the stability of the dimer interface of the α-crystallin domain, increases oligomeric size, and modestly increases chaperone activity. Our results suggest a conserved mechanism of pH-dependent structural regulation among the human sHSPs that possess the conserved histidine, although the functional consequences of the structural modulations vary for different sHSPs.

Concepts: Proteins, Protein, Chaperone, PH, Proteasome, Heat shock protein, Co-chaperone, Hsp27


Constitutively expressed small heat shock protein HspB1 regulates many fundamental cellular processes and plays major roles in many human pathological diseases. In that regard, this chaperone has a huge number of apparently unrelated functions that appear linked to its ability to recognize many client polypeptides that are subsequently modified in their activity and/or half-life. A major parameter to understand how HspB1 is dedicated to interact with particular clients in defined cellular conditions relates to its complex oligomerization and phosphorylation properties. Indeed, HspB1 structural organization displays dynamic and complex rearrangements in response to changes in the cellular environment or when the cell physiology is modified. These structural modifications probably reflect the formation of structural platforms aimed at recognizing specific client polypeptides. Here, I have reviewed data from the literature and re-analyzed my own studies to describe and discuss these fascinating changes in HspB1 structural organization.

Concepts: Proteins, Protein, Gene expression, Cell biology, Chaperone, Proteasome, Heat shock protein, Hsp27


The interaction of human small heat shock protein HspB1, its point mutants associated with distal hereditary motor neuropathy, and three other small heat shock proteins (HspB5, HspB6, HspB8) with the light component of neurofilaments (NFL) was analyzed by differential centrifugation, analytical ultracentrifugation, and fluorescent spectroscopy. The wild-type HspB1 decreased the quantity of NFL in pellets obtained after low- and high-speed centrifugation and increased the quantity of NFL remaining in the supernatant after high-speed centrifugation. Part of HspB1 was detected in the pellet of NFL after high-speed centrifugation, and at saturation, 1 mol of HspB1 monomer was bound per 2 mol of NFL. Point mutants of HspB1 associated with distal hereditary motor neuropathy (G84R, L99M, R140G, K141Q, and P182S) were almost as effective as the wild-type HspB1 in modulation of NFL assembly. At low ionic strength, HspB1 weakly interacted with NFL tetramers, and this interaction was increased upon salt-induced polymerization of NFL. HspB1 and HspB5 (αB-crystallin) decreased the rate of NFL polymerization measured by fluorescent spectroscopy. HspB6 (Hsp20) and HspB8 (Hsp22) were less effective than HspB1 (or HspB5) in modulation of NFL assembly. The data presented indicate that the small heat shock proteins affect NFL transition from tetramers to filaments, hydrodynamic properties of filaments, and their bundling and therefore probably modulate the formation of intermediate filament networks in neurons.

Concepts: Cell biology, Polymer, Monomer, Heat shock protein, Laboratory techniques, Ionic strength, Hsp27, Differential centrifugation


Small heat shock proteins (sHsps) are a family of ATP-independent molecular chaperones that are important for binding and stabilizing unfolded proteins. In this task, the sHsps have been proposed to coordinate with ATP-dependent chaperones, including heat shock protein 70 (Hsp70). However, it isn’t yet clear how these two important components of the chaperone network are linked. We report that the Hsp70 co-chaperone, BAG3, is a modular, scaffolding factor to bring together sHsps and Hsp70s. Using domain deletions and point mutations, we confirmed that BAG3 uses both of its IPV motifs to interact with sHsps, including Hsp27 (HspB1), αB-crystallin (HspB5), Hsp22 (HspB8) and Hsp20 (HspB6). BAG3 does not appear to be a passive scaffolding factor; rather, its binding promoted de-oligomerization of Hsp27, likely by competing for the self-interactions that normally stabilize large oligomers. BAG3 bound to Hsp70 at the same time as either Hsp22, Hsp27 or αB-crystallin, suggesting that it might physically bring the chaperone families together into a complex. Indeed, addition of BAG3 coordinated the ability of Hsp22 and Hsp70 to refold denatured luciferase in vitro. Together, these results suggest that BAG3 physically and functionally links Hsp70 and sHsps.

Concepts: Proteins, Protein, Endoplasmic reticulum, Chaperone, Proteasome, Heat shock protein, Co-chaperone, Hsp27