SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Histone deacetylase

188

Bisphenol A (BPA) is a ubiquitous compound that is emerging as a possible toxicant during embryonic development. BPA has been shown to epigenetically affect the developing nervous system, but the molecular mechanisms are not clear. Here we demonstrate that BPA exposure in culture led to delay in the perinatal chloride shift caused by significant decrease in potassium chloride cotransporter 2 (Kcc2) mRNA expression in developing rat, mouse, and human cortical neurons. Neuronal chloride increased correspondingly. Treatment with epigenetic compounds decitabine and trichostatin A rescued the BPA effects as did knockdown of histone deacetylase 1 and combined knockdown histone deacetylase 1 and 2. Furthermore, BPA evoked increase in tangential interneuron migration and increased chloride in migrating neurons. Interestingly, BPA exerted its effect in a sexually dimorphic manner, with a more accentuated effect in females than males. By chromatin immunoprecipitation, we found a significant increase in binding of methyl-CpG binding protein 2 to the “cytosine-phosphate-guanine shores” of the Kcc2 promoter, and decrease in binding of acetylated histone H3K9 surrounding the transcriptional start site. Methyl-CpG binding protein 2-expressing neurons were more abundant resulting from BPA exposure. The sexually dimorphic effect of BPA on Kcc2 expression was also demonstrated in cortical neurons cultured from the offspring of BPA-fed mouse dams. In these neurons and in cortical slices, decitabine was found to rescue the effect of BPA on Kcc2 expression. Overall, our results indicate that BPA can disrupt Kcc2 gene expression through epigenetic mechanisms. Beyond increase in basic understanding, our findings have relevance for identifying unique neurodevelopmental toxicity mechanisms of BPA, which could possibly play a role in pathogenesis of human neurodevelopmental disorders.

Concepts: Nervous system, DNA, Gene, Gene expression, Transcription, Histone, Epigenetics, Histone deacetylase

172

Increasing evidence shows that the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) possesses potent anti-inflammatory and immunomodulatory properties. It is tempting to evaluate the potential of SAHA as a therapeutic agent in various neuroinflammatory and neurodegenerative disorders.

Concepts: Histone deacetylase, Neuroscience, Neurology, Vorinostat, Histone deacetylase inhibitor, Trichostatin A, Hydroxamic acid, Hydroxamic acids

171

Sirtuins are protein deacetylases regulating metabolism, stress responses, and aging processes, and they were suggested to mediate the lifespan extending effect of a low calorie diet. Sirtuin activation by the polyphenol resveratrol can mimic such lifespan extending effects and alleviate metabolic diseases. The mechanism of Sirtuin stimulation is unknown, hindering the development of improved activators. Here we show that resveratrol inhibits human Sirt3 and stimulates Sirt5, in addition to Sirt1, against fluorophore-labeled peptide substrates but also against peptides and proteins lacking the non-physiological fluorophore modification. We further present crystal structures of Sirt3 and Sirt5 in complex with fluorogenic substrate peptide and modulator. The compound acts as a top cover, closing the Sirtuin’s polypeptide binding pocket and influencing details of peptide binding by directly interacting with this substrate. Our results provide a mechanism for the direct activation of Sirtuins by small molecules and suggest that activators have to be tailored to a specific Sirtuin/substrate pair.

Concepts: Protein, Amino acid, Metabolism, Histone deacetylase, Antioxidant, Resveratrol, Sirtuin, Sir2

170

Learning induced changes in protein acetylation, mediated by histone acetyl transferases (HATs), and the antagonistic histone deacetylases (HDACs) play a critical role in memory formation. The status of histone acetylation affects the interaction between the transcription-complex and DNA and thus regulates transcription-dependent processes required for long-term memory (LTM). While the majority of studies report on the role of elevated acetylation in memory facilitation, we address the impact of both, increased and decreased acetylation on formation of appetitive olfactory memory in honeybees. We show that learning-induced changes in the acetylation of histone H3 at aminoacid-positions H3K9 and H3K18 exhibit distinct and different dynamics depending on the training strength. A strong training that induces LTM leads to an immediate increase in acetylation at H3K18 that stays elevated for hours. A weak training, not sufficient to trigger LTM, causes an initial increase in acetylation at H3K18, followed by a strong reduction in acetylation at H3K18 below the control group level. Acetylation at position H3K9 is not affected by associative conditioning, indicating specific learning-induced actions on the acetylation machinery. Elevating acetylation levels by blocking HDACs after conditioning leads to an improved memory. While memory after strong training is enhanced for at least 2 days, the enhancement after weak training is restricted to 1 day. Reducing acetylation levels by blocking HAT activity after strong training leads to a suppression of transcription-dependent LTM. The memory suppression is also observed in case of weak training, which does not require transcription processes. Thus, our findings demonstrate that acetylation-mediated processes act as bidirectional regulators of memory formation that facilitate or suppress memory independent of its transcription-requirement.

Concepts: DNA, Histone, Histone deacetylase, Posttranslational modification, Nucleosome, Acetylation, Histone H3, Histone acetyltransferase

167

There is collecting evidence suggesting that the process of chromatin remodeling such as changes in histone acetylation contribute to the formation of stress-related memory. Recently, the ventrolateral orbital cortex (VLO), a major subdivision of orbitofrontal cortex (OFC), was shown to be involved in antidepressant-like actions through epigenetic mechanisms. Here, we further investigated the effects of the histone deacetylase inhibitor (HDACi) valproic acid (VPA) on stress-related memory formation and the underlying molecular mechanisms by using the traditional two-day forced swimming test (FST). The results showed that VPA significantly increased the immobility time on day 2 when infused into the VLO before the initial forced swim stress on day 1. The learned immobility response to the stress was associated with increased phosphorylation of extracellular signal-regulated kinase (ERK) in VLO and hippocampus on the first day. The levels of phosphorylated ERK (phospho-ERK) in VLO and hippocampus were significantly decreased when retested 24 h later. The pretreatment with intra-VLO VPA infusion further reduced the activation of ERK on day 2 and day 7 compared with the saline controls. Moreover, the VPA infusion pretreatment also induced a significantly decreased BDNF level in the VLO on day 2, whereas no change was detected in the hippocampus. These findings suggest that VPA enhance the memories of emotionally stressful events and the ERK activity is implicated in stimulating adaptive and mnemonic processes in case the event would recur.

Concepts: Histone, Epigenetics, Histone deacetylase, Posttranslational modification, Memory, Limbic system, Acetylation, Histone-Modifying Enzymes

164

Epigenetic control using histone deacetylase (HDAC) inhibitors is a promising therapy for lymphomas. Insights into the anti-proliferative effects of HDAC inhibitors on diffuse large B-cell lymphoma (DLBCL) and further understanding of the underlying mechanisms, which remain unclear to date, are of great importance.

Concepts: Histone, Histone deacetylase, Lymphoma, Diffuse large B cell lymphoma

130

Death of cochlear hair cells, which do not regenerate, is a cause of hearing loss in a high percentage of the population. Currently, no approach exists to obtain large numbers of cochlear hair cells. Here, using a small-molecule approach, we show significant expansion (>2,000-fold) of cochlear supporting cells expressing and maintaining Lgr5, an epithelial stem cell marker, in response to stimulation of Wnt signaling by a GSK3β inhibitor and transcriptional activation by a histone deacetylase inhibitor. The Lgr5-expressing cells differentiate into hair cells in high yield. From a single mouse cochlea, we obtained over 11,500 hair cells, compared to less than 200 in the absence of induction. The newly generated hair cells have bundles and molecular machinery for transduction, synapse formation, and specialized hair cell activity. Targeting supporting cells capable of proliferation and cochlear hair cell replacement could lead to the discovery of hearing loss treatments.

Concepts: DNA, Gene, Histone deacetylase, Stem cell, Auditory system, Cochlea, Hearing impairment, Hair cell

69

Drugs that recapitulate aspects of the exercise adaptive response have the potential to provide better treatment for diseases associated with physical inactivity. We previously observed reduced skeletal muscle class IIa HDAC (histone deacetylase) transcriptional repressive activity during exercise. Here, we find that exercise-like adaptations are induced by skeletal muscle expression of class IIa HDAC mutants that cannot form a corepressor complex. Adaptations include increased metabolic gene expression, mitochondrial capacity, and lipid oxidation. An existing HDAC inhibitor, Scriptaid, had similar phenotypic effects through disruption of the class IIa HDAC corepressor complex. Acute Scriptaid administration to mice increased the expression of metabolic genes, which required an intact class IIa HDAC corepressor complex. Chronic Scriptaid administration increased exercise capacity, whole-body energy expenditure and lipid oxidation, and reduced fasting blood lipids and glucose. Therefore, compounds that disrupt class IIa HDAC function could be used to enhance metabolic health in chronic diseases driven by physical inactivity.

Concepts: DNA, Gene, Genetics, Gene expression, Metabolism, Adenosine triphosphate, Histone deacetylase, Transcription factor

61

Addiction to cocaine is commonly preceded by experiences with legal or decriminalized drugs, such as alcohol, nicotine, and marijuana. The biological mechanisms by which these gateway drugs contribute to cocaine addiction are only beginning to be understood. We report that in the rat, prior alcohol consumption results in enhanced addiction-like behavior to cocaine, including continued cocaine use despite aversive consequences. Conversely, prior cocaine use has no effect on alcohol preference. Long-term, but not short-term, alcohol consumption promotes proteasome-mediated degradation of the nuclear histone deacetylases HDAC4 and HDAC5 in the nucleus accumbens, a brain region critical for reward-based memory. Decreased nuclear HDAC activity results in global H3 acetylation, creating a permissive environment for cocaine-induced gene expression. We also find that selective degradation of HDAC4 and HDAC5, facilitated by the class II-specific HDAC inhibitor MC1568, enhances compulsive cocaine self-administration. These results parallel our previously reported findings that the gateway drug nicotine enhances the behavioral effects of cocaine via HDAC inhibition. Together, our findings suggest a shared mechanism of action for the gateway drugs alcohol and nicotine, and reveal a novel mechanism by which environmental factors may alter the epigenetic landscape of the reward system to increase vulnerability to cocaine addiction.

Concepts: Ventral tegmental area, Histone, Histone deacetylase, Drug addiction, Dopamine, Mesolimbic pathway, Psychoactive drug, Cocaine

59

Chronic alcoholics who also binge drink (i.e., acute on chronic) are prone to an exacerbated liver injury but its mechanism is not understood. We therefore investigated the in vivo effects of chronic and binge ethanol ingestion and compared to chronic ethanol followed by three repeat binge ethanol on the liver of male C57/BL6 mice fed ethanol in liquid diet (4%) for four weeks followed by binge ethanol (intragastric administration, 3.5 g/kg body weight, three doses, 12h apart). Chronic followed by binge ethanol exacerbated fat accumulation, necrosis, decrease in hepatic SAM and SAM:SAH ratio, increase in adenosine levels, and elevated CYP2E1 levels. Histone H3 lysine acetylation (H3AcK9), dually modified phosphoacetylated histone H3 (H3AcK9/PS10), and phosphorylated H2AX increased after binge whereas phosphorylation of histone H3 ser 10 (H3S10) and H3 ser 28 (H3S28) increased after chronic ethanol-binge. Histone H3 lysine 4 and 9 dimethylation increased with a marked dimethylation in H3K9 in chronic ethanol binge group. Trimethylated histone H3 levels did not change. Nuclear levels of histone acetyl transferase GCN5 and histone deacetylase HDAC3 were elevated whereas phospho-CREB decreased in a distinctive manner. Taken together, acute on chronic ethanol ingestion caused amplification of liver injury and elicited characteristic profiles of histone modifications, metabolic alterations, and changes in nuclear protein levels. These findings demonstrate that chronic ethanol exposure renders liver more susceptible to repeat acute/binge ethanol induced acceleration of alcoholic liver disease.

Concepts: Protein, Histone, Histone deacetylase, Alcoholism, Posttranslational modification, Nucleosome, Alcohol abuse, Acetylation