Discover the most talked about and latest scientific content & concepts.

Concept: High-speed rail


In this paper, we characterise tourists most likely to visit a coastal destination by high-speed rail (HSR). Our data came from a survey conducted among HSR passengers during 2014’s high season (July and August) at Spain’s Camp de Tarragona and Alicante Stations, each of which is near a mass tourism destination on the Mediterranean coast: the Costa Daurada and the Costa Blanca, respectively. We used responses to the survey, which presented binary discrete-choice situations, to construct a database necessary for a logistic regression model that allowed us to examine how passenger profile, trip characteristics, and stay conditions influenced the use of HSR services on visits to each coastal destination. Results highlighted significant differences in the profiles of tourists who arrived at each destination by HSR and, in turn, that no specific tourist profile is associated with HSR, even for two stations that serve sunny beach destinations. Among its implications, to analyse travellers that HSR can attract, it is vital to consider the specific characteristics of each destination and its current market.

Concepts: Regression analysis, Mediterranean Sea, Spain, Tourism, Paris, Rail transport, High-speed rail, Alicante


An efficient maintenance is a key consideration in systems of railway transport, especially in high-speed trains, in order to avoid accidents with catastrophic consequences. In this sense, having a method that allows for the early detection of defects in critical elements, such as the bogie mechanical components, is a crucial for increasing the availability of rolling stock and reducing maintenance costs. The main contribution of this work is the proposal of a methodology that, based on classical signal processing techniques, provides a set of parameters for the fast identification of the operating state of a critical mechanical system. With this methodology, the vibratory behaviour of a very complex mechanical system is characterised, through variable inputs, which will allow for the detection of possible changes in the mechanical elements. This methodology is applied to a real high-speed train in commercial service, with the aim of studying the vibratory behaviour of the train (specifically, the bogie) before and after a maintenance operation. The results obtained with this methodology demonstrated the usefulness of the new procedure and allowed for the disclosure of reductions between 15% and 45% in the spectral power of selected Intrinsic Mode Functions (IMFs) after the maintenance operation.

Concepts: Train, Locomotive, Rail transport, High-speed rail, Railroad car, Passenger rail terminology


At present, railway infrastructure experiences harsh environments and aggressive loading conditions from increased traffic and load demands. Ground borne vibration has become one of these environmental challenges. Overhead line equipment (OHLE) provides electric power to the train and is, for one or two tracks, normally supported by cantilever masts. A cantilever mast, which is made of H-section steel, is slender and has a poor dynamic behaviour by nature. It can be seen from the literature that ground borne vibrations cause annoyance to people in surrounding areas especially in buildings. Nonetheless, mast structures, which are located nearest and alongside the railway track, have not been fully studied in terms of their dynamic behaviour. This paper presents the effects of ground borne vibrations generated by high speed trains on cantilever masts and contact wire located alongside railway tracks. Ground borne vibration velocities at various train speeds, from 100 km/h to 300 km/h, are considered based on the consideration of semi-empirical models for predicting low frequency vibration on ground. A three-dimensional mast structure with varying soil stiffness is made using a finite element model. The displacement measured is located at the end of cantilever mast which is the position of contact wire. The construction tolerance of contact stagger is used as an allowable movement of contact wire in transverse direction. The results show that the effect of vibration velocity from train on the transverse direction of mast structure is greater than that on the longitudinal direction. Moreover, the results obtained indicate that the ground bourn vibrations caused by high speed train are not strong enough to cause damage to the contact wire. The outcome of this study will help engineers improve the design standard of cantilever mast considering the effect of ground borne vibration as preliminary parameter for construction tolerances.

Concepts: Velocity, Train, Locomotive, Rail transport, High-speed rail, Rail tracks, Third rail, Overhead lines


Circuity, defined as the ratio of the shortest network distance to the Euclidean distance between one origin-destination (O-D) pair, can be adopted as a helpful evaluation method of indirect degrees of train paths. In this paper, the maximum circuity of the paths of operated trains is set to be the threshold value of the circuity of high-speed train paths. For the shortest paths of any node pairs, if their circuity is not higher than the threshold value, the paths can be regarded as the reasonable paths. With the consideration of a certain relative or absolute error, we cluster the reasonable paths on the basis of their inclusion relationship and the center path of each class represents a passenger transit corridor. We take the high-speed rail (HSR) network in China at the end of 2014 as an example, and obtain 51 passenger transit corridors, which are alternative sets of train paths. Furthermore, we analyze the circuity distribution of paths of all node pairs in the network. We find that the high circuity of train paths can be decreased with the construction of a high-speed railway line, which indicates that the structure of the HSR network in China tends to be more complete and the HSR network can make the Chinese railway network more efficient.

Concepts: Rail transport, High-speed rail, High-speed rail in China


The Shinkansen super-express railway system in Japan has greatly increased its capacity and has expanded nationwide. However, many inhabitants in areas along the railways have been disturbed by noise and ground vibration from the trains. Additionally, the Shinkansen railway emits a higher level of ground vibration than conventional railways at the same noise level. These findings imply that building vibrations affect living environments as significantly as the associated noise. Therefore, it is imperative to quantify the effects of noise and vibration exposures on each annoyance under simultaneous exposure. We performed a secondary analysis using individual datasets of exposure and community response associated with Shinkansen railway noise and vibration. The data consisted of six socio-acoustic surveys, which were conducted separately over the last 20 years in Japan. Applying a logistic regression analysis to the datasets, we confirmed the combined effects of vibration/noise exposure on noise/vibration annoyance. Moreover, we proposed a representative relationship between noise and vibration exposures, and the prevalence of each annoyance associated with the Shinkansen railway.

Concepts: Regression analysis, Logistic regression, Locomotive, Rail transport, High-speed rail, Third rail, Railroad car, Passenger rail terminology


Big data have contributed to deepen our understanding in regards to many human systems, particularly human mobility patterns and the structure and functioning of transportation systems. Resonating the recent call for ‘open big data,’ big data from various sources on a range of scales have become increasingly accessible to the public. However, open big data relevant to travelers within public transit tools remain scarce, hindering any further in-depth study on human mobility patterns. Here, we explore ticketing-website derived data that are publically available but have been largely neglected. We demonstrate the power, potential and limitations of this open big data, using the Chinese high-speed rail (HSR) system as an example. Using an application programming interface, we automatically collected the data on the remaining tickets (RTD) for scheduled trains at the last second before departure in order to retrieve information on unused transit capacity, occupancy rate of trains, and passenger flux at stations. We show that this information is highly useful in characterizing the spatiotemporal patterns of traveling behaviors on the Chinese HSR, such as weekend traveling behavior, imbalanced commuting behavior, and station functionality. Our work facilitates the understanding of human traveling patterns along the Chinese HSR, and the functionality of the largest HSR system in the world. We expect our work to attract attention regarding this unique open big data source for the study of analogous transportation systems.

Concepts: Psychology, Transport, Behavior, Application programming interface, Train, Train station, Rail transport, High-speed rail


This paper presents a 0-1 programming model aimed at obtaining the optimal inventory policy and transportation mode for maintenance spare parts of high-speed trains. To obtain the model parameters for occasionally-replaced spare parts, a demand estimation method based on the maintenance strategies of China’s high-speed railway system is proposed. In addition, we analyse the shortage time using PERT, and then calculate the unit time shortage cost from the viewpoint of train operation revenue. Finally, a real-world case study from Shanghai Depot is conducted to demonstrate our method. Computational results offer an effective and efficient decision support for inventory managers.

Concepts: Mathematics, Train, Locomotive, Rail transport, High-speed rail, Passenger rail terminology, Transrapid, High-speed rail in China


Analysis of the slipstream development around the high-speed trains in tunnels would provide references for assessing the transient gust loads on trackside workers and trackside furniture in tunnels. This paper focuses on the computational analysis of the slipstream caused by high-speed trains passing through double-track tunnels with a cross-sectional area of 100 m2. Three-dimensional unsteady compressible Reynolds-averaged Navier-Stokes equations and a realizable k-ε turbulence model were used to describe the airflow characteristics around a high-speed train in the tunnel. The moving boundary problem was treated using the sliding mesh technology. Three cases were simulated in this paper, including two tunnel lengths and two different configurations of the train. The train speed in these three cases was 250 km/h. The accuracy of the numerical method was validated by the experimental data from full-scale tests, and reasonable consistency was obtained. The results show that the flow field around the high-speed trains can be divided into three distinct regions: the region in front of the train nose, the annular region and the wake region. The slipstream development along the two sides of train is not in balance and offsets to the narrow side in the double-track tunnels. Due to the piston effect, the slipstream has a larger peak value in the tunnel than in open air. The tunnel length, train length and length ratio affect the slipstream velocities; in particular, the velocities increase with longer trains. Moreover, the propagation of pressure waves also induces the slipstream fluctuations: substantial velocity fluctuations mainly occur in front of the train, and weaken with the decrease in amplitude of the pressure wave.

Concepts: Fundamental physics concepts, Fluid dynamics, Aerodynamics, Numerical analysis, Navier–Stokes equations, Paris, Rail transport, High-speed rail


The vigilance of the driver is important for railway safety, despite not being included in the safety management system (SMS) for high-speed train safety. In this paper, a novel fatigue detection system for high-speed train safety based on monitoring train driver vigilance using a wireless wearable electroencephalograph (EEG) is presented. This system is designed to detect whether the driver is drowsiness. The proposed system consists of three main parts: (1) a wireless wearable EEG collection; (2) train driver vigilance detection; and (3) early warning device for train driver. In the first part, an 8-channel wireless wearable brain-computer interface (BCI) device acquires the locomotive driver’s brain EEG signal comfortably under high-speed train-driving conditions. The recorded data are transmitted to a personal computer (PC) via Bluetooth. In the second step, a support vector machine (SVM) classification algorithm is implemented to determine the vigilance level using the Fast Fourier transform (FFT) to extract the EEG power spectrum density (PSD). In addition, an early warning device begins to work if fatigue is detected. The simulation and test results demonstrate the feasibility of the proposed fatigue detection system for high-speed train safety.

Concepts: Electroencephalography, Discrete Fourier transform, Fast Fourier transform, Convolution, Convolution theorem, Rail transport, High-speed rail, TGV


The rail fastening system is an important part of a high-speed railway track. It is always critical to the operational safety and comfort of railway vehicles. Therefore, the condition detection of the rail fastening system, looseness or absence, is an important task in railway maintenance. However, the vision-based method cannot identify the severity of rail fastener looseness. In this paper, the condition of rail fastening system is monitored based on an automatic and remote-sensing measurement system. Meanwhile, wavelet packet analysis is used to analyze the acceleration signals, based on which two damage indices are developed to locate the damage position and evaluate the severity of rail fasteners looseness, respectively. To verify the effectiveness of the proposed method, an experiment is performed on a high-speed railway experimental platform. The experimental results show that the proposed method is effective to assess the condition of the rail fastening system. The monitoring system significantly reduces the inspection time and increases the efficiency of maintenance management.

Concepts: Fastener, Rail transport, High-speed rail, Rail tracks, Derailment, Fasteners, Passenger rail terminology, Circlip