SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Helium

389

Generous behaviour is known to increase happiness, which could thereby motivate generosity. In this study, we use functional magnetic resonance imaging and a public pledge for future generosity to investigate the brain mechanisms that link generous behaviour with increases in happiness. Participants promised to spend money over the next 4 weeks either on others (experimental group) or on themselves (control group). Here, we report that, compared to controls, participants in the experimental group make more generous choices in an independent decision-making task and show stronger increases in self-reported happiness. Generous decisions engage the temporo-parietal junction (TPJ) in the experimental more than in the control group and differentially modulate the connectivity between TPJ and ventral striatum. Importantly, striatal activity during generous decisions is directly related to changes in happiness. These results demonstrate that top-down control of striatal activity plays a fundamental role in linking commitment-induced generosity with happiness.

Concepts: Psychology, Brain, Brain tumor, Nuclear magnetic resonance, Human brain, Magnetic resonance imaging, Striatum, Helium

169

BACKGROUND: The treatment planning of spine pathologies requires information on the rigidity and permeability of the intervertebral discs (IVDs). Magnetic resonance imaging (MRI) offers great potential as a sensitive and non-invasive technique for describing the mechanical properties of IVDs. However, the literature reported small correlation coefficients between mechanical properties and MRI parameters. Our hypothesis is that the compressive modulus and the permeability of the IVD can be predicted by a linear combination of MRI parameters. METHODS: Sixty IVDs were harvested from bovine tails, and randomly separated in four groups (in-situ, digested-6h, digested-18h, digested-24h). Multi-parametric MRI acquisitions were used to quantify the relaxation times T1 and T2, the magnetization transfer ratio MTR, the apparent diffusion coefficient ADC and the fractional anisotropy FA. Unconfined compression, confined compression and direct permeability measurements were performed to quantify the compressive moduli and the hydraulic permeabilities. Differences between groups were evaluated from a one way ANOVA. Multi linear regressions were performed between dependent mechanical properties and independent MRI parameters to verify our hypothesis. A principal component analysis was used to convert the set of possibly correlated variables into a set of linearly uncorrelated variables. Agglomerative Hierarchical Clustering was performed on the 3 principal components. RESULTS: Multilinear regressions showed that 45 to 80% of the Young’s modulus E, the aggregate modulus in absence of deformation HA0, the radial permeability kr and the axial permeability in absence of deformation k0 can be explained by the MRI parameters within both the nucleus pulposus and the annulus pulposus. The principal component analysis reduced our variables to two principal components with a cumulative variability of 52-65%, which increased to 70-82% when considering the third principal component. The dendograms showed a natural division into four clusters for the nucleus pulposus and into three or four clusters for the annulus fibrosus. CONCLUSIONS: The compressive moduli and the permeabilities of isolated IVDs can be assessed mostly by MT and diffusion sequences. However, the relationships have to be improved with the inclusion of MRI parameters more sensitive to IVD degeneration. Before the use of this technique to quantify the mechanical properties of IVDs in vivo on patients suffering from various diseases, the relationships have to be defined for each degeneration state of the tissue that mimics the pathology. Our MRI protocol associated to principal component analysis and agglomerative hierarchical clustering are promising tools to classify the degenerated intervertebral discs and further find biomarkers and predictive factors of the evolution of the pathologies.

Concepts: Nuclear magnetic resonance, Magnetic resonance imaging, Principal component analysis, Diffusion MRI, Pearson product-moment correlation coefficient, Spin echo, Young's modulus, Helium

168

Previous studies have defined low-frequency, spatially consistent intrinsic connectivity networks (ICN) in resting functional magnetic resonance imaging (fMRI) data which reflect functional interactions among distinct brain areas. We sought to explore whether and how repeated migraine attacks influence intrinsic brain connectivity, as well as how activity in these networks correlates with clinical indicators of migraine.

Concepts: Brain, Brain tumor, Nuclear magnetic resonance, Magnetic resonance imaging, Migraine, Helium, Aura, Scintillating scotoma

99

To demonstrate the use of (18)Fluorodeoxyglucose positron emission tomography (PET) and magnetic resonance imaging (MRI) in combination ((18)FDG-PET) to assess the metabolic activity of ACL graft tissue and evaluate the utility of this technique for ligament imaging.

Concepts: Spin, Medical imaging, Positron emission tomography, Positron, Nuclear magnetic resonance, Magnetic resonance imaging, Radiology, Helium

88

Van der Waals forces are among the weakest, yet most decisive interactions governing condensation and aggregation processes and the phase behaviour of atomic and molecular matter. Understanding the resulting structural motifs and patterns has become increasingly important in studies of the nanoscale regime. Here we measure the paradigmatic van der Waals interactions represented by the noble gas atom pairs Ar-Xe, Kr-Xe and Xe-Xe with a Xe-functionalized tip of an atomic force microscope at low temperature. Individual rare gas atoms were fixed at node sites of a surface-confined two-dimensional metal-organic framework. We found that the magnitude of the measured force increased with the atomic radius, yet detailed simulation by density functional theory revealed that the adsorption induced charge redistribution strengthened the van der Waals forces by a factor of up to two, thus demonstrating the limits of a purely atomic description of the interaction in these representative systems.

Concepts: Electric charge, Fundamental physics concepts, Atom, Van der Waals force, Gas, Helium, Noble gas, Electron shell

68

Higher-order cognitive training has shown to enhance performance in older adults, but the neural mechanisms underlying performance enhancement have yet to be fully disambiguated. This randomized trial examined changes in processing speed and processing speed-related neural activity in older participants (57-71 years of age) who underwent cognitive training (CT, N = 12) compared with wait-listed (WLC, N = 15) or exercise-training active (AC, N = 14) controls. The cognitive training taught cognitive control functions of strategic attention, integrative reasoning, and innovation over 12 weeks. All 3 groups worked through a functional magnetic resonance imaging processing speed task during 3 sessions (baseline, mid-training, and post-training). Although all groups showed faster reaction times (RTs) across sessions, the CT group showed a significant increase, and the WLC and AC groups showed significant decreases across sessions in the association between RT and BOLD signal change within the left prefrontal cortex (PFC). Thus, cognitive training led to a change in processing speed-related neural activity where faster processing speed was associated with reduced PFC activation, fitting previously identified neural efficiency profiles.

Concepts: Psychology, Brain, Nuclear magnetic resonance, Magnetic resonance imaging, Attention-deficit hyperactivity disorder, Attention versus memory in prefrontal cortex, Prefrontal cortex, Helium

34

Previous simulations of the growth of cosmic structures have broadly reproduced the ‘cosmic web’ of galaxies that we see in the Universe, but failed to create a mixed population of elliptical and spiral galaxies, because of numerical inaccuracies and incomplete physical models. Moreover, they were unable to track the small-scale evolution of gas and stars to the present epoch within a representative portion of the Universe. Here we report a simulation that starts 12 million years after the Big Bang, and traces 13 billion years of cosmic evolution with 12 billion resolution elements in a cube of 106.5 megaparsecs a side. It yields a reasonable population of ellipticals and spirals, reproduces the observed distribution of galaxies in clusters and characteristics of hydrogen on large scales, and at the same time matches the ‘metal’ and hydrogen content of galaxies on small scales.

Concepts: Galaxy, Big Bang, Redshift, Hydrogen, Helium, Deuterium, Universe, Physical cosmology

32

The “identifiable victim effect” refers to peoples' tendency to preferentially give to identified versus anonymous victims of misfortune, and has been proposed to partly depend on affect. By soliciting charitable donations from human subjects during behavioral and neural (i.e., functional magnetic resonance imaging) experiments, we sought to determine whether and how affect might promote the identifiable victim effect. Behaviorally, subjects gave more to orphans depicted by photographs versus silhouettes, and their shift in preferences was mediated by photograph-induced feelings of positive arousal, but not negative arousal. Neurally, while photographs versus silhouettes elicited activity in widespread circuits associated with facial and affective processing, only nucleus accumbens activity predicted and could statistically account for increased donations. Together, these findings suggest that presenting evaluable identifiable information can recruit positive arousal, which then promotes giving. We propose that affect elicited by identifiable stimuli can compel people to give more to strangers, even despite costs to the self.

Concepts: Psychology, Brain, Nuclear magnetic resonance, Magnetic resonance imaging, Behavior, Human behavior, Dopamine, Helium

31

Neurocognitive models and previous neuroimaging work posit that auditory verbal hallucinations (AVH) arise due to increased activity in speech-sensitive regions of the left posterior superior temporal gyrus (STG). Here, we examined if patients with schizophrenia (SCZ) and AVH could be trained to down-regulate STG activity using real-time functional magnetic resonance imaging neurofeedback (rtfMRI-NF). We also examined the effects of rtfMRI-NF training on functional connectivity between the STG and other speech and language regions. Twelve patients with SCZ and treatment-refractory AVH were recruited to participate in the study and were trained to down-regulate STG activity using rtfMRI-NF, over four MRI scanner visits during a 2-week training period. STG activity and functional connectivity were compared pre- and post-training. Patients successfully learnt to down-regulate activity in their left STG over the rtfMRI-NF training. Post- training, patients showed increased functional connectivity between the left STG, the left inferior prefrontal gyrus (IFG) and the inferior parietal gyrus. The post-training increase in functional connectivity between the left STG and IFG was associated with a reduction in AVH symptoms over the training period. The speech-sensitive region of the left STG is a suitable target region for rtfMRI-NF in patients with SCZ and treatment-refractory AVH. Successful down-regulation of left STG activity can increase functional connectivity between speech motor and perception regions. These findings suggest that patients with AVH have the ability to alter activity and connectivity in speech and language regions, and raise the possibility that rtfMRI-NF training could present a novel therapeutic intervention in SCZ.

Concepts: Brain, Medical imaging, Nuclear magnetic resonance, Magnetic resonance imaging, Cerebrum, Superior temporal gyrus, Schizophrenia, Helium

31

Geochemical monitoring of groundwater and soil gas emission pointed out precursor and/or coseismic anomalies of noble gases associated with earthquakes, but there was lack of plausible physico-chemical basis. A laboratory experiment of rock fracturing and noble gas emission was conducted, but there is no quantitative connection between the laboratory results and observation in field. We report here deep groundwater helium anomalies related to the 2016 Kumamoto earthquake, which is an inland crustal earthquake with a strike-slip fault and a shallow hypocenter (10 km depth) close to highly populated areas in Southwest Japan. The observed helium isotope changes, soon after the earthquake, are quantitatively coupled with volumetric strain changes estimated from a fault model, which can be explained by experimental studies of helium degassing during compressional loading of rock samples. Groundwater helium is considered as an effective strain gauge. This suggests the first quantitative linkage between geochemical and seismological observations and may open the possibility to develop a new monitoring system to detect a possible strain change prior to a hazardous earthquake in regions where conventional borehole strain meter is not available.

Concepts: Scientific method, Atom, Gas, Helium, Earthquake, Noble gas, Neon, Argon