SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Halophile

139

Hypersaline environments pose major challenges to their microbial residents. Microorganisms have to cope with increased osmotic pressure and low water activity and therefore require specific adaptation mechanisms. Although mechanisms have already been thoroughly investigated in the green alga Dunaliella salina and some halophilic yeasts, strategies for osmoadaptation in other protistan groups (especially heterotrophs) are neither as well known nor as deeply investigated as for their prokaryotic counterpart. This is not only due to the recent awareness of the high protistan diversity and ecological relevance in hypersaline systems, but also due to methodological shortcomings. We provide the first experimental study on haloadaptation in heterotrophic microeukaryotes, using the halophilic ciliate Schmidingerothrix salinarum as a model organism. We established three approaches to investigate fundamental adaptation strategies known from prokaryotes. First, hydrogen-1 nuclear magnetic resonance (1H-NMR) spectroscopy was used for the detection, identification, and quantification of intracellular compatible solutes. Second, ion-imaging with cation-specific fluorescent dyes was employed to analyze changes in the relative ion concentrations in intact cells. Third, the effect of salt concentrations on the catalytic performance of S. salinarum malate dehydrogenase (MDH) and isocitrate dehydrogenase (ICDH) was determined. 1H-NMR spectroscopy identified glycine betaine (GB) and ectoine (Ect) as the main compatible solutes in S. salinarum. Moreover, a significant positive correlation of intracellular GB and Ect concentrations and external salinity was observed. The addition of exogenous GB, Ect, and choline (Ch) stimulated the cell growth notably, indicating that S. salinarum accumulates the solutes from the external medium. Addition of external 13C2-Ch resulted in conversion to 13C2-GB, indicating biosynthesis of GB from Ch. An increase of external salinity up to 21% did not result in an increase in cytoplasmic sodium concentration in S. salinarum. This, together with the decrease in the catalytic activities of MDH and ICDH at high salt concentration, demonstrates that S. salinarum employs the salt-out strategy for haloadaptation.

Concepts: Microorganism, Citric acid cycle, Archaea, Dunaliella salina, Organism, Eukaryote, Halophile, Bacteria

27

Many members of the Halobacteriaceae were found to produce halocins, molecules that inhibit the growth of other halophilic archaea. Halocin H4 that is produced by Haloferax mediterranei and inhibits the growth of Halobacterium salinarum is one of the best studied halocins to date. The gene encoding this halocin had been previously identified as halH4, located on one of Hfx. mediterranei megaplasmids. We generated a mutant of the halH4 gene and examined the killing ability of the Haloferax mediterranei halH4 mutant with respect to both Halobacterium salinarum and Haloferax volcanii. We showed that both wild-type Hfx. mediterranei and the halH4 mutant strain efficiently inhibited the growth of both species, indicating halocin redundancy. Surprisingly, the halH4 deletion mutant exhibited faster growth in standard medium than the wild type, and is likely to have a better response to several nucleotides, which could explain this phenotype.

Concepts: Halophile, Halobacterium, Extremophiles, Classical genetics, Halobacteriaceae, DNA, Archaea, Gene

27

Laboratory cultures of a number of red extremely halophilic Archaea (Halobacterium salinarum strains NRC-1 and R1, Halorubrum sodomense, Haloarcula valismortis) and of Salinibacter ruber, a red extremely halophilic member of the Bacteria, have been investigated by Raman spectroscopy using 514.5nm excitation to characterize their carotenoids. The 50-carbon carotenoid α-bacterioruberin was detected as the major carotenoid in all archaeal strains. Raman spectroscopy also detected bacterioruberin as the main pigment in a red pellet of cells collected from a saltern crystallizer pond. Salinibacter contains the C-carotenoid acyl glycoside salinixanthin (all-E, 2’S)-2'-hydroxy-1'-[6-O-(methyltetradecanoyl)-β-d-glycopyranosyloxy]-3',4'-didehydro-1',2'-dihydro-β,ψ-carotene-4-one), for which the Raman bands assignments of are given here for the first time.

Concepts: Halophile, Halobacteria, Raman spectroscopy, Bacteria, Halobacteriaceae, Photosynthesis, Spectroscopy, Archaea

25

Chromium (Cr) is one of the most serious pollutants in aquatic systems. This study was performed to understand the effect of Cr (VI) on halophilic algal strains of D. salina and D. tertiolecta. The results revealed good tolerance of D. salina towards chromium (VI) up to 8 ppm concentration, whereas tolerance level in D. tertiolecta was up to 2 ppm concentration. Cr (VI) not only inhibited the growth of D. tertiolecta, but also showed increased inhibition in the level of photosynthetic pigments, protein and carbohydrate. Results have revealed that chromium (VI) induced higher increase in lipid peroxidation and H2O2 production in D. tertiolecta than the D. salina, particularly at higher concentration of chromium (VI). Chromium (VI) induced increase in the rate of RNO bleaching, loss of pigments and thiol (—SH) group was relatively higher in D. tertiolecta than the D. salina, which is indicating that D. tertiolecta was prone to Cr (VI) induced oxidative stress. Results on RNO bleaching in the presence of radical quenchers suggested that OHdeg radical played an important role in the chromium (VI)—induced general oxidative stress in D. tertiolecta.

Concepts: Chromium, Dunaliella, Oxidative stress, Halophile, Algae, Vitamin C, Dunaliella salina, Photosynthesis

24

Thirty-five extremely halophilic microbial strains isolated from crystallizer (TS18) and non-crystallizer (M1) ponds in the Sfax solar saltern in Tunisia were examined for their ability to exert antimicrobial activity. Antagonistic assays resulted in the selection of eleven strains that displayed such antimicrobial activity and they were further characterized. Three cases of cross-domain inhibition (archaea/bacteria or bacteria/archaea) were observed. Four archaeal strains exerted antimicrobial activity against several other strains. Three strains, for which several lines of evidence suggested the antimicrobial activity was, at least in part, due to peptide/protein agents (Halobacterium salinarum ETD5, Hbt. salinarum ETD8, and Haloterrigena thermotolerans SS1R12), were studied further. Optimal culture conditions for growth and antimicrobial production were determined. Using DNA amplification with specific primers, sequencing and RT-PCR analysis, Hbt. salinarum ETD5 and Hbt. salinarum ETD8 were shown to encode and express halocin S8, a hydrophobic antimicrobial peptide targeting halophilic archaea. Although the gene encoding halocin H4 was amplified from the genome of Htg. thermotolerans SS1R12, no transcript could be detected and the antimicrobial activity was most likely due to multiple antimicrobial compounds. This is also the first report that points to four different strains isolated from different geographical locations with the capacity to produce identical halocin S8 proteins.

Concepts: Halobacterium, Halophile, Gene, Microbiology, DNA, Protein, Bacteria, Archaea

24

Archaeal communities and the factors regulating their diversity in high altitude lakes are poorly understood. Here, we provide the first high-throughput sequencing study of Archaea from Tibetan Plateau lake sediments. We analyzed twenty lake sediments from the world’s highest and largest plateau and found diverse archaeal assemblages that clustered into groups dominated by methanogenic Euryarchaeota, Crenarchaeota and Halobacteria/mixed euryarchaeal phylotypes. Statistical analysis inferred that salinity was the major driver of community composition, and that archaeal diversity increased with salinity. Sediments with the highest salinities were mostly dominated by Halobacteria. Crenarchaeota dominated at intermediate salinities, and methanogenes were present in all lake sediments, albeit most abundant at low salinities. The distribution patterns of the three functional types of methanogens (hydrogenotrophic, acetotrophic and methylotrophic) were also related to changes in salinity. Our results show that salinity is a key factor controlling archaeal community diversity and composition in lake sediments on a spatial scale that spans nearly two thousand kilometers on the Tibetan Plateau.

Concepts: Sediment, Plateau, Halophile, Halobacterium, Euryarchaeota, Halobacteria, Microbiology, Archaea

22

In Algeria, many salt lakes are to be found spread from southern Tunisia up to the Atlas Mountains in northern Algeria. Oum Eraneb and Ain El beida sebkhas (salt lakes), are located in the Algerian Sahara. The aim of this study was to explore the diversity of the halobacteria in this type of habitats. The physicochemical properties of these shallow saline environments were examined and compared with other hypersaline and marine ecosystems. Both sites were relatively alkaline with a pH around 8.57- 8.74 and rich in salt at 13% and 16% (w/v) salinity for Oum Eraneb and Ain El beida, respectively, with dominant ions of sodium and chloride. The microbial approach revealed the presence of two halophilic archaea, strains JCM13561 and A33T in both explored sebkhas. Growth occurred between 10 and 25% (w/v) NaCl and the isolates grow optimally at 20% (w/v) NaCl. The pH range for growth was 6 to 9.5 with an optimum at pH 7.5 for the first strain and 7 to 9.5 with an optimum pH at 8.5-9 for the second strain. On the basis of 16S rRNA gene sequence analysis, strains JCM13561 and A33T were most closely related to Halorubrum litoreum and Natronorubrum bangense (99% and 96% similarity, respectively).

Concepts: Salt, Halophile, Sahara, Ribosomal RNA, Sodium chloride, 16S ribosomal RNA, Algeria, Archaea

22

The diversity of haloarchaea associated with different dry salt lakes in northeastern Algeria was investigated together with their potential of hydrolytic enzyme production. A total of 68 aerobic halophilic archaea were isolated from saline sediments. Based on the 16S rRNA gene sequencing, the isolates were assigned to seven phylotypes within the class Halobacteria, namely Haloarcula, Halococcus, Haloferax, Halogeometricum, Haloterrigena, Natrialba, and Natrinema. The results showed that Haloferax group was found to be dominant in all samples (30 isolates) (44%) with high diversity, followed by Halococcus spp. (13%) (9 isolates). All phylotypes are extreme halophiles and thermotolerant with the ability to grow at temperatures up to 48 °C. In addition, the screening for extracellular halophilic enzymes showed that 89.7% of the isolates were able to produce at least two types of the screened enzymes. The strains producing esterase, gelatinase, inulinase, cellulase and protease activities were the most diverse functional group. These data showed an abundant and diverse haloarchaeal community, detected in Algerian wetland ecosystems, presenting a promising source of molecules with important biotechnological applications.

Concepts: Haloarchaea, Halobacteria, Ribosomal RNA, 16S ribosomal RNA, Archaea, Enzyme, Halophile, Halobacteriaceae

4

Flamingoes (Phoenicopterus spp.) whose plumage displays elegant colors, inhabit warm regions close to the ocean throughout the world. The pink or reddish color of their plumage originates from carotenoids ingested from carotenoid-abundant food sources, since flamingoes are unable to synthesize these compounds de novo. In this study, viable red-colored archaeal strains classified as extremely halophilic archaea (i.e., haloarchaea) and belonging to the genera Halococcus and Halogeometricum were isolated from the plumage of flamingoes in captivity. Detailed analysis for haloarchaeal community structure in flamingo feathers based on metagenomic data identified several haloarchaeal genera and unclassified sequences of the class Halobacteria at the genus level. Carotenoid pigment analyses showed that a bacterioruberin precursor carotenoid in haloarchaea was identical to one of the pigments found in flamingo plumage. To the best of our knowledge, this is the first report of viable extremophilic archaea in avian plumage, thus contributing to our understanding of the ecology of haloarchaea. The potential influence of haloarchaea as an environmental factor determining avian plumage coloration should be investigated in further studies.

Concepts: Color, Microbiology, Haloarchaea, Halobacteria, Flamingo, Archaea, Carotenoid, Halophile

1

Hypersaline environments encompass aquatic and terrestrial habitats. While only a limited number of studies on the microbial diversity of saline soils have been carried out, hypersaline lakes and marine salterns have been thoroughly investigated, resulting in an aquatic-biased knowledge about life in hypersaline environments. To improve our understanding of the assemblage of microbes thriving in saline soils, we assessed the phylogenetic diversity and metabolic potential of the prokaryotic community of two hypersaline soils (with electrical conductivities of ~24 and 55 dS/m) from the Odiel saltmarshes (Spain) by metagenomics. Comparative analysis of these soil databases with available datasets from salterns ponds allowed further identification of unique and shared traits of microbial communities dwelling in these habitats. Saline soils harbored a more diverse prokaryotic community and, in contrast to their aquatic counterparts, contained sequences related to both known halophiles and groups without known halophilic or halotolerant representatives, which reflects the physical heterogeneity of the soil matrix. Our results suggest thatHaloquadratumand certain Balneolaeota members may preferentially thrive in aquatic or terrestrial habitats, respectively, while haloarchaea, nanohaloarchaea andSalinibactermay be similarly adapted to both environments. We reconstructed 4 draft genomes related to Bacteroidetes, Balneolaeota and Halobacteria and appraised their metabolism, osmoadaptation strategies and ecology. This study greatly improves the current understanding of saline soils microbiota.

Concepts: Microorganism, Metabolism, Halophile, Soil, Organism, Microbiology, Bacteria, Archaea