SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Gut flora

753

Background Recurrent Clostridium difficile infection is difficult to treat, and failure rates for antibiotic therapy are high. We studied the effect of duodenal infusion of donor feces in patients with recurrent C. difficile infection. Methods We randomly assigned patients to receive one of three therapies: an initial vancomycin regimen (500 mg orally four times per day for 4 days), followed by bowel lavage and subsequent infusion of a solution of donor feces through a nasoduodenal tube; a standard vancomycin regimen (500 mg orally four times per day for 14 days); or a standard vancomycin regimen with bowel lavage. The primary end point was the resolution of diarrhea associated with C. difficile infection without relapse after 10 weeks. Results The study was stopped after an interim analysis. Of 16 patients in the infusion group, 13 (81%) had resolution of C. difficile-associated diarrhea after the first infusion. The 3 remaining patients received a second infusion with feces from a different donor, with resolution in 2 patients. Resolution of C. difficile infection occurred in 4 of 13 patients (31%) receiving vancomycin alone and in 3 of 13 patients (23%) receiving vancomycin with bowel lavage (P<0.001 for both comparisons with the infusion group). No significant differences in adverse events among the three study groups were observed except for mild diarrhea and abdominal cramping in the infusion group on the infusion day. After donor-feces infusion, patients showed increased fecal bacterial diversity, similar to that in healthy donors, with an increase in Bacteroidetes species and clostridium clusters IV and XIVa and a decrease in Proteobacteria species. Conclusions The infusion of donor feces was significantly more effective for the treatment of recurrent C. difficile infection than the use of vancomycin. (Funded by the Netherlands Organization for Health Research and Development and the Netherlands Organization for Scientific Research; Netherlands Trial Register number, NTR1177 .).

Concepts: Bacteria, Gut flora, Antibiotic resistance, Antibiotic, Probiotic, Clostridium difficile, Diarrhea

743

In 1965, the Sugar Research Foundation (SRF) secretly funded a review in the New England Journal of Medicine that discounted evidence linking sucrose consumption to blood lipid levels and hence coronary heart disease (CHD). SRF subsequently funded animal research to evaluate sucrose’s CHD risks. The objective of this study was to examine the planning, funding, and internal evaluation of an SRF-funded research project titled “Project 259: Dietary Carbohydrate and Blood Lipids in Germ-Free Rats,” led by Dr. W.F.R. Pover at the University of Birmingham, Birmingham, United Kingdom, between 1967 and 1971. A narrative case study method was used to assess SRF Project 259 from 1967 to 1971 based on sugar industry internal documents. Project 259 found a statistically significant decrease in serum triglycerides in germ-free rats fed a high sugar diet compared to conventional rats fed a basic PRM diet (a pelleted diet containing cereal meals, soybean meals, whitefish meal, and dried yeast, fortified with a balanced vitamin supplement and trace element mixture). The results suggested to SRF that gut microbiota have a causal role in carbohydrate-induced hypertriglyceridemia. A study comparing conventional rats fed a high-sugar diet to those fed a high-starch diet suggested that sucrose consumption might be associated with elevated levels of beta-glucuronidase, an enzyme previously associated with bladder cancer in humans. SRF terminated Project 259 without publishing the results. The sugar industry did not disclose evidence of harm from animal studies that would have (1) strengthened the case that the CHD risk of sucrose is greater than starch and (2) caused sucrose to be scrutinized as a potential carcinogen. The influence of the gut microbiota in the differential effects of sucrose and starch on blood lipids, as well as the influence of carbohydrate quality on beta-glucuronidase and cancer activity, deserve further scrutiny.

Concepts: Gut flora, Metabolism, Nutrition, Glucose, Triglyceride, Case study, Carbohydrate, Blood lipids

427

The effects of probiotic supplementation on fecal microbiota composition in healthy adults have not been well established. We aimed to provide a systematic review of the potential evidence for an effect of probiotic supplementation on the composition of human fecal microbiota as assessed by high-throughput molecular approaches in randomized controlled trials (RCTs) of healthy adults.

Concepts: Epidemiology, Gut flora, Evidence-based medicine, Systematic review, Randomized controlled trial, Effectiveness, Pharmaceutical industry, Meta-analysis

404

Obesity and type 2 diabetes are characterized by altered gut microbiota, inflammation, and gut barrier disruption. Microbial composition and the mechanisms of interaction with the host that affect gut barrier function during obesity and type 2 diabetes have not been elucidated. We recently isolated Akkermansia muciniphila, which is a mucin-degrading bacterium that resides in the mucus layer. The presence of this bacterium inversely correlates with body weight in rodents and humans. However, the precise physiological roles played by this bacterium during obesity and metabolic disorders are unknown. This study demonstrated that the abundance of A. muciniphila decreased in obese and type 2 diabetic mice. We also observed that prebiotic feeding normalized A. muciniphila abundance, which correlated with an improved metabolic profile. In addition, we demonstrated that A. muciniphila treatment reversed high-fat diet-induced metabolic disorders, including fat-mass gain, metabolic endotoxemia, adipose tissue inflammation, and insulin resistance. A. muciniphila administration increased the intestinal levels of endocannabinoids that control inflammation, the gut barrier, and gut peptide secretion. Finally, we demonstrated that all these effects required viable A. muciniphila because treatment with heat-killed cells did not improve the metabolic profile or the mucus layer thickness. In summary, this study provides substantial insight into the intricate mechanisms of bacterial (i.e., A. muciniphila) regulation of the cross-talk between the host and gut microbiota. These results also provide a rationale for the development of a treatment that uses this human mucus colonizer for the prevention or treatment of obesity and its associated metabolic disorders.

Concepts: Bacteria, Gut flora, Nutrition, Insulin, Diabetes mellitus type 2, Diabetes mellitus, Obesity, Insulin resistance

365

Autism spectrum disorders (ASD) are complex neurobiological disorders that impair social interactions and communication and lead to restricted, repetitive, and stereotyped patterns of behavior, interests, and activities. The causes of these disorders remain poorly understood, but gut microbiota, the 10(13) bacteria in the human intestines, have been implicated because children with ASD often suffer gastrointestinal (GI) problems that correlate with ASD severity. Several previous studies have reported abnormal gut bacteria in children with ASD. The gut microbiome-ASD connection has been tested in a mouse model of ASD, where the microbiome was mechanistically linked to abnormal metabolites and behavior. Similarly, a study of children with ASD found that oral non-absorbable antibiotic treatment improved GI and ASD symptoms, albeit temporarily. Here, a small open-label clinical trial evaluated the impact of Microbiota Transfer Therapy (MTT) on gut microbiota composition and GI and ASD symptoms of 18 ASD-diagnosed children.

Concepts: Bacteria, Gut flora, Digestive system, Escherichia coli, Autism, Pervasive developmental disorder, Asperger syndrome, Autism spectrum

316

Antibiotics, though remarkably useful, can also cause certain adverse effects. We detected that treatment of adult mice with antibiotics decreases hippocampal neurogenesis and memory retention. Reconstitution with normal gut flora (SPF) did not completely reverse the deficits in neurogenesis unless the mice also had access to a running wheel or received probiotics. In parallel to an increase in neurogenesis and memory retention, both SPF-reconstituted mice that ran and mice supplemented with probiotics exhibited higher numbers of Ly6C(hi) monocytes in the brain than antibiotic-treated mice. Elimination of Ly6C(hi) monocytes by antibody depletion or the use of knockout mice resulted in decreased neurogenesis, whereas adoptive transfer of Ly6C(hi) monocytes rescued neurogenesis after antibiotic treatment. We propose that the rescue of neurogenesis and behavior deficits in antibiotic-treated mice by exercise and probiotics is partially mediated by Ly6C(hi) monocytes.

Concepts: Immune system, Psychology, Bacteria, Gut flora, Hippocampus, Antibiotic, Probiotic, Clostridium difficile

278

Recent insights into the role of the human microbiota in cognitive and affective functioning have led to the hypothesis that probiotic supplementation may act as an adjuvant strategy to ameliorate or prevent depression.

Concepts: Psychology, Gut flora, Randomized controlled trial, Escherichia coli, Pharmaceutical industry, Probiotic, Seasonal affective disorder, Emotion

262

Early-life exposure to household pets has the capacity to reduce risk for overweight and allergic disease, especially following caesarean delivery. Since there is some evidence that pets also alter the gut microbial composition of infants, changes to the gut microbiome are putative pathways by which pet exposure can reduce these risks to health. To investigate the impact of pre- and postnatal pet exposure on infant gut microbiota following various birth scenarios, this study employed a large subsample of 746 infants from the Canadian Healthy Infant Longitudinal Development Study (CHILD) cohort, whose mothers were enrolled during pregnancy between 2009 and 2012. Participating mothers were asked to report on household pet ownership at recruitment during the second or third trimester and 3 months postpartum. Infant gut microbiota were profiled with 16S rRNA sequencing from faecal samples collected at the mean age of 3.3 months. Two categories of pet exposure (i) only during pregnancy and (ii) pre- and postnatally were compared to no pet exposure under different birth scenarios.

Concepts: Pregnancy, Childbirth, Infant, Gut flora, Ribosomal RNA, Allergy, 16S ribosomal RNA, Feces

253

Attempts to alter intestinal dysbiosis via administration of probiotics have consistently shown that colonization with the administered microbes is transient. This study sought to determine whether provision of an initial course of Bifidobacterium longum subsp. infantis (B. infantis) would lead to persistent colonization of the probiotic organism in breastfed infants. Mothers intending to breastfeed were recruited and provided with lactation support. One group of mothers fed B. infantis EVC001 to their infants from day 7 to day 28 of life (n = 34), and the second group did not administer any probiotic (n = 32). Fecal samples were collected during the first 60 postnatal days in both groups. Fecal samples were assessed by 16S rRNA gene sequencing, quantitative PCR, mass spectrometry, and endotoxin measurement. B. infantis-fed infants had significantly higher populations of fecal Bifidobacteriaceae, in particular B. infantis, while EVC001 was fed, and this difference persisted more than 30 days after EVC001 supplementation ceased. Fecal milk oligosaccharides were significantly lower in B. infantis EVC001-fed infants, demonstrating higher consumption of human milk oligosaccharides by B. infantis EVC001. Concentrations of acetate and lactate were significantly higher and fecal pH was significantly lower in infants fed EVC001, demonstrating alterations in intestinal fermentation. Infants colonized by Bifidobacteriaceae at high levels had 4-fold-lower fecal endotoxin levels, consistent with observed lower levels of Gram-negative Proteobacteria and Bacteroidetes. IMPORTANCE The gut microbiome in early life plays an important role for long-term health and is shaped in large part by diet. Probiotics may contribute to improvements in health, but they have not been shown to alter the community composition of the gut microbiome. Here, we found that breastfed infants could be stably colonized at high levels by provision of B. infantis EVC001, with significant changes to the overall microbiome composition persisting more than a month later, whether the infants were born vaginally or by caesarean section. This observation is consistent with previous studies demonstrating the capacity of this subspecies to utilize human milk glycans as a nutrient and underscores the importance of pairing a probiotic organism with a specific substrate. Colonization by B. infantis EVC001 resulted in significant changes to fecal microbiome composition and was associated with improvements in fecal biochemistry. The combination of human milk and an infant-associated Bifidobacterium sp. shows, for the first time, that durable changes to the human gut microbiome are possible and are associated with improved gut function.

Concepts: Bacteria, Gut flora, Ribosomal RNA, Milk, Breastfeeding, Lactation, 16S ribosomal RNA, Breast milk

252

Non-caloric artificial sweeteners (NAS) are among the most widely used food additives worldwide, regularly consumed by lean and obese individuals alike. NAS consumption is considered safe and beneficial owing to their low caloric content, yet supporting scientific data remain sparse and controversial. Here we demonstrate that consumption of commonly used NAS formulations drives the development of glucose intolerance through induction of compositional and functional alterations to the intestinal microbiota. These NAS-mediated deleterious metabolic effects are abrogated by antibiotic treatment, and are fully transferrable to germ-free mice upon faecal transplantation of microbiota configurations from NAS-consuming mice, or of microbiota anaerobically incubated in the presence of NAS. We identify NAS-altered microbial metabolic pathways that are linked to host susceptibility to metabolic disease, and demonstrate similar NAS-induced dysbiosis and glucose intolerance in healthy human subjects. Collectively, our results link NAS consumption, dysbiosis and metabolic abnormalities, thereby calling for a reassessment of massive NAS usage.

Concepts: Bacteria, Gut flora, Metabolism, Nutrition, Organism, Feces, Food additive, Sugar substitute