Discover the most talked about and latest scientific content & concepts.

Concept: Gulf of Aden


[This corrects the article DOI: 10.1371/journal.pone.0165136.].

Concepts: Indian Ocean, Persian Gulf, Yemen, Red Sea, Arabian Sea, Somalia, Gulf of Aden, Aden


The semi-enclosed nature of the Red Sea (20.2°N-38.5°N) makes it a natural laboratory to study the influence of environmental gradients on microbial communities. This study investigates the composition and structure of microbial prokaryotes and eukaryotes using molecular methods, targeting ribosomal RNA genes across different regions and seasons. The interaction between spatial and temporal scales results in different scenarios of turbulence and nutrient conditions allowing for testing of ecological theory that categorizes the response of the plankton community to these variations. The prokaryotic reads are mainly comprised of Cyanobacteria and Proteobacteria (Alpha and Gamma), with eukaryotic reads dominated by Dinophyceae and Syndiniophyceae. Periodic increases in the proportion of Mamiellophyceae and Bacillariophyceae reads were associated with alterations in the physical oceanography leading to nutrient increases either through the influx of Gulf of Aden Intermediate Water (south in the fall) or through water column mixing processes (north in the spring). We observed that in general dissimilarity amongst microbial communities increased when nutrient concentrations were higher, whereas richness (observed OTUs) was higher in scenarios of higher turbulence. Maximum abundance models showed the differential responses of dominant taxa to temperature giving an indication how taxa will respond as waters become warmer and more oligotrophic.

Concepts: Archaea, Bacteria, Eukaryote, Ribosome, Prokaryote, Plankton, Red Sea, Gulf of Aden


Basin-scale calcification rates are highly important in assessments of the global oceanic carbon cycle. Traditionally, such estimates were based on rates of sedimentation measured with sediment traps or in deep sea cores. Here we estimated CaCO3 precipitation rates in the surface water of the Red Sea from total alkalinity depletion along their axial flow using the water flux in the straits of Bab el Mandeb. The relative contribution of coral reefs and open sea plankton were calculated by fitting a Rayleigh distillation model to the increase in the strontium to calcium ratio. We estimate the net amount of CaCO3 precipitated in the Red Sea to be 7.3 ± 0.4·10(10) kg·y(-1) of which 80 ± 5% is by pelagic calcareous plankton and 20 ± 5% is by the flourishing coastal coral reefs. This estimate for pelagic calcification rate is up to 40% higher than published sedimentary CaCO3 accumulation rates for the region. The calcification rate of the Gulf of Aden was estimated by the Rayleigh model to be ∼1/2 of the Red Sea, and in the northwestern Indian Ocean, it was smaller than our detection limit. The results of this study suggest that variations of major ions on a basin scale may potentially help in assessing long-term effects of ocean acidification on carbonate deposition by marine organisms.

Concepts: Carbon dioxide, Coral reef, Indian Ocean, Ocean, Persian Gulf, Red Sea, Ocean acidification, Gulf of Aden


Many species of Arabian mammals are considered to be of Afrotropical origin and for most of them the Red Sea has constituted an obstacle for dispersal since the Miocene-Pliocene transition. There are two possible routes, the ‘northern’ and the ‘southern’, for terrestrial mammals (including humans) to move between Africa and Arabia. The ‘northern route’, crossing the Sinai Peninsula, is confirmed for several taxa by an extensive fossil record, especially from northern Egypt and the Levant, whereas the ‘southern route’, across the Bab-el-Mandab Strait, which links the Red Sea with the Gulf of Aden, is more controversial, although post-Pliocene terrestrial crossings of the Red Sea might have been possible during glacial maxima when sea levels were low. Hamadryas baboons (Papio hamadryas) are the only baboon taxon to disperse out of Africa and still inhabit Arabia. In this study, we investigate the origin of Arabian hamadryas baboons using mitochondrial sequence data from 294 samples collected in Arabia and Northeast Africa. Through the analysis of the geographic distribution of genetic diversity, the timing of population expansions, and divergence time estimates combined with palaeoecological data, we test: (i) if Arabian and African hamadryas baboons are genetically distinct; (ii) if Arabian baboons exhibit population substructure; and (iii) when, and via which route, baboons colonized Arabia. Our results suggest that hamadryas baboons colonized Arabia during the Late Pleistocene (130-12 kya [thousands of years ago]) and also moved back to Africa. We reject the hypothesis that hamadryas baboons were introduced to Arabia by humans, because the initial colonization considerably predates the earliest records of human seafaring in this region. Our results strongly suggest that the ‘southern route’ from Africa to Arabia could have been used by hamadryas baboons during the same time period as proposed for modern humans.

Concepts: Africa, Primate, Egypt, Persian Gulf, Yemen, Red Sea, Hamadryas Baboon, Gulf of Aden


Although the Gulf of Aqaba-Eilat is located in the tectonically active northern Red Sea, it has been described as low-risk with regard to tsunami activity because there are no modern records of damaging tsunami events and only one tsunami (1068 AD) referred to in historical records. However, this assessment may be poorly informed given that the area was formed by and is located along the seismically active Dead Sea Fault, its population is known to fluctuate in size and literacy in part due to its harsh hyper-arid climate, and there is a dearth of field studies addressing the presence or absence of tsunamigenic deposits. Here we show evidence from two offshore cores for a major paleotsunami that occurred ~2300 years ago with a sedimentological footprint that far exceeds the scarce markers of the historically mentioned 1068 AD event. The interpretation is based on the presence of a laterally continuous and synchronous, anomalous sedimentological deposit that includes allochtonous inclusions and unique structural characteristics. Based on sedimentological parameters, these deposits could not be accounted for by other transport events, or other known background sedimentological processes.

Concepts: Indian Ocean, Israel, History, Persian Gulf, Red Sea, American record labels, Dead Sea, Gulf of Aden


The Gulf of Tadjoura is located in the Horn of Africa and is widely recognized as an important site where the zooplanktivorous whale sharks seasonally aggregate from October to February. The surface zooplankton community (0-3m) was weekly sampled from November 2016 to February 2017 in two sites during the whale shark aggregation period. A total of 12 phyla were identified. Copepoda represented the most abundant and diverse group with 29 different genera, and contributed with an average of 82% of the mean zooplankton density of approximately 6600indm-3. During the sampling period, copepods were dominated numerically by Calanoida (3600indm-3), followed by Poicilostomatatoida (1300indm-3). Within the copepods, Paracalanidae, Calanidae, Oncaeidae and Miraciidae were the most common families. The temporal trend in zooplankton biomass at both stations revealed the highest peak in December (41.3±36.4mgm-3), and the lowest in February (6.6±3.3mgm-3). As no information is available on the occurrence of legacy contaminants use and release in this area, analysis revealed the consistent presence of both DDT and PCB residues in zooplankton samples in the Gulf of Tadjoura. Total PCB ranged from approximately 110 to 637ngg-1 d.w., while total DDT from 21 to 80ngg-1 d.w. The proportion of primary DDT in the total residue was higher than DDE and DDD, which strongly suggests that the area might actually be subjected to DDT inputs of the parent compound.

Concepts: Fish, DDT, Shark, Red Sea, Calanoida, Horn of Africa, Krill, Gulf of Aden


Although weekly consumption of fish is recommended, the presence of contaminants in seafood has raised many concerns regarding the benefits of fish intake. In the present study microplastics (MPs) and metals' concentration in muscles of both benthic and pelagic fish species from northeast of Persian Gulf were investigated and the risk/benefit of their consumption was assessed. The results demonstrated that MPs and Hg in all species and Se in benthic species increase with size, while relationship between other metals, and fish size is not consistent. Consumption of a meal ration of 300 and < 100 g/week for adults and children, respectively, is recommended since it would provide the required essential elements with no human health risk. On the other hand, the estimated intake of MPs from fish muscles revealed that the mean intake of MPs for P. indicus, E. coioides, A. djedaba, and S. jello consumption is 555, 240, 233, and 169 items/300 g-week, respectively. Moreover, the relationship between MPs and metals in fish muscles were positive for A. djedaba, and negative for E. coioides. Considering the chemical toxicity of MPs and metals, and their good linear relationships in some species, consumption of high doses of the studied fish may pose a health threat to the consumers.

Concepts: Chemical element, United Arab Emirates, Toxicity, Iran, Persian Gulf, Iraq, Pelagic fish, Gulf of Aden


The Northern Dispersal Route (NDR) and Southern Dispersal Route (SDR) are hypothesized to have been used by modern humans in the dispersal out of Africa. The NDR follows the Nile into Northeast Africa and crosses the Red Sea into the Levant. The SDR emerges from the Horn of Africa and crosses the Bab el-Mandeb into southern Arabia. In this study, we analyze genetic data from populations living along the NDR and SDR to test support for each dispersal route.

Concepts: Africa, Egypt, Jordan, Yemen, Red Sea, Eritrea, Somalia, Gulf of Aden


This study presents the first algal thallus (skeleton) archive of Asian monsoon strength and Red Sea influence in the Gulf of Aden. Mg/Ca, Li/Ca, Ba/Ca were measured on Lithophyllum yemenense from Balhaf (Gulf of Aden) using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), and Mg/Ca ratio oscillation was used to reconstruct the chronology (34 years). Oscillations of element rates corresponding to the algal growth between 1974 and 2008 were compared with recorded climate and oceanographic variability. During this period, sea surface temperatures (SST) in Balhaf recorded a warming trend of 0.55°C, corresponding to an increase in Mg and Li content in the algal thallus of 2.1 mol % and 1.87 μmol %, respectively. Lithophyllum yemenense recorded decadal SST variability by Li/Ca, and the influence of the Pacific El-Niño Southern Oscillation (ENSO) on the NW Indian Ocean climate system by Ba/Ca. Additionally, algal Mg/Ca, Li/Ca and Ba/Ca showed strong and significant correlations to All Indian Rainfall in the decadal range indicating that these proxies can be useful for tracking variability of the Indian monsoon system, possibly due to changes of the surface wind system, with deep water upwelling in summer, and a distinct seasonality. This article is protected by copyright. All rights reserved.

Concepts: Indian Ocean, Ocean, Monsoon, Persian Gulf, Red Sea, Arabian Sea, Somalia, Gulf of Aden


Several specimens of the giant deep-sea isopod genus Bathynomus were collected by a deep-sea lander at a depth of 898 m from Hainan Island, northern South China Sea. After careful examination, this material and the specimens collected from Gulf of Aden, north-western Indian Ocean, previously reported as Bathynomus sp., were identified to be the same as a new species to the genus. Bathynomus jamesi sp. nov. can be distinguished from the congeners by the distal margin of pleotelson with 11 or 13 short straight spines and central spine not bifid; uropodal endopod and exopod with distolateral corner slightly pronounced; clypeus with lateral margins concave; and antennal flagellum extending when extended posteriorly reaches the pereonite 3. In addition, Bathynomus jamesi sp. nov. is also supported by molecular analyses based on mitochondrial COI and 16S rRNA gene sequences. The distribution range of the new species includes the western Pacific and north-western Indian Ocean. This article is protected by copyright. All rights reserved.

Concepts: Ribosomal RNA, Crustacean, 16S ribosomal RNA, People's Republic of China, Indian Ocean, Pacific Ocean, Ocean, Gulf of Aden