SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: GUCY2D

169

The GUCY2D gene encodes retinal membrane guanylyl cyclase (RetGC1), a key component of the phototransduction machinery in photoreceptors. Mutations in GUCY2D cause Leber congenital amaurosis type 1 (LCA1), an autosomal recessive human retinal blinding disease. The effects of RetGC1 deficiency on human rod and cone photoreceptor structure and function are currently unknown. To move LCA1 closer to clinical trials, we characterized a cohort of patients (ages 6 mos - 37 yrs) with GUCY2D mutations. In vivo analyses of retinal architecture indicated intact rod photoreceptors in all patients but abnormalities in foveal cones. By functional phenotype, there were patients with and those without detectable cone vision. Rod vision could be retained and did not correlate with extent of cone vision or age. In patients without cone vision, rod vision functioned unsaturated under bright ambient illumination. In vitro analyses of the mutant alleles showed that in addition to the major truncation of the essential catalytic domain in RetGC1, some missense mutations in LCA1 patients result in a severe loss of function by inactivating its catalytic activity and/or ability to interact with the activator proteins, GCAPs. The differences in rod sensitivities among patients were not explained by the biochemical properties of the mutants. However, the RetGC1 mutant alleles with remaining biochemical activity in vitro were associated with retained cone vision in vivo. We postulate a relationship between the level of RetGC1 activity and the degree of cone vision abnormality, and argue for cone function being the efficacy outcome in clinical trials of gene augmentation therapy in LCA1.

Concepts: Point mutation, Blindness, Allele, GUCY2D, Retina, Leber's congenital amaurosis, Photoreceptor cell, Mutation

28

Mutations in GUCY2D are associated with recessive Leber congenital amaurosis-1 (LCA1). GUCY2D encodes photoreceptor-specific, retinal guanylate cyclase-1 (RetGC1). Reports of retinal degeneration in LCA1 are conflicting; some describe no obvious degeneration and others report loss of both rods and cones. Proof of concept studies in models representing the spectrum of phenotypes is warranted. We have previously demonstrated AAV-mediated RetGC1 is therapeutic in GC1ko mice, a model exhibiting loss of cones only. The purpose of this study was to characterize AAV-mediated gene therapy in the RetGC1/RetGC2 double knockout (GCdko) mouse, a model lacking rod and cone function and exhibiting progressive loss of both photoreceptor subclasses. Use of this model also allowed for the evaluation of the functional efficiency of transgenic RetGC1 isozyme. Subretinal delivery of AAV8(Y733F) vector containing the human rhodopsin kinase (hGRK1) promoter driving murine Gucy2e was performed in GCdko mice at various postnatal time points. Treatment resulted in restoration of rod and cone function at all treatment ages and preservation of retinal structure in GCdko mice treated as late as 7 weeks of age. Functional gains and structural preservation were stable for at least 1 year. Treatment also conferred cortical- and subcortical-based visually- guided behavior. Functional efficiency of transgenic RetGC1 was indistinguishable from that of endogenous isozyme in congenic WT mice. This study clearly demonstrates AAV-mediated RetGC1 expression restores function to and preserves structure of rod and cone photoreceptors in a degenerative model of retinal guanylate cyclase deficiency, further supporting development of an AAV-based vector for treatment of LCA1.

Concepts: Cone cell, Rod cell, GUCY2D, Gene, Leber's congenital amaurosis, Eye, Retina, Photoreceptor cell

27

Mutations in GUCY2D are the cause of Leber congenital amaurosis type 1 (LCA1). GUCY2D encodes retinal guanylate cyclase-1 (retGC1), a protein expressed exclusively in outer segments of photoreceptors and essential for timely recovery from photoexcitation. Recent clinical data show that, despite a high degree of visual disturbance stemming from a loss of cone function, LCA1 patients retain normal photoreceptor architecture, except for foveal cone outer segment abnormalities and, in some patients, foveal cone loss. These results point to the cone-rich central retina as a target for GUCY2D replacement. LCA1 gene replacement studies thus far have been conducted in rod-dominant models (mouse) or with vectors and organisms lacking clinical translatability. Here we investigate gene replacement in the Nrl(-/-)Gucy2e(-/-) mouse, an all-cone model deficient in retGC1. We show that AAV-retGC1 treatment fully restores cone function, cone-mediated visual behavior, and guanylate cyclase activity, and preserves cones in treated Nrl(-/-)Gucy2e(-/-) mice over the long-term. A novel finding was that retinal function could be restored to levels above that in Nrl(-/-) controls, contrasting results in other models of retGC1 deficiency. We attribute this to increased cyclase activity in treated Nrl(-/-)Gucy2e(-/-) mice relative to Nrl(-/-) controls. Thus, Nrl(-/-)Gucy2e(-/-) mice possess an expanded dynamic range in ERG response to gene replacement relative to other models. Lastly, we show that a candidate clinical vector, AAV5-GRK1-GUCY2D, when delivered to adult Nrl(-/-)Gucy2e(-/-) mice, restores retinal function that persists for at least 6 months. Our results provide strong support for clinical application of a gene therapy targeted to the cone-rich, central retina of LCA1 patients.

Concepts: Amaurosis, Retina, Rod cell, Gene, Guanylate cyclase, GUCY2D, Leber's congenital amaurosis, Photoreceptor cell

0

GUCY2D has been associated with autosomal recessive Leber Congenital Amaurosis and autosomal dominant cone-rod dystrophy. This report expands the phenotype of autosomal recessive mutations to congenital night blindness which may slowly progress to retinitis pigmentosa.

Concepts: GUCY2D, Amaurosis, Ophthalmology, Retinitis pigmentosa, Leber's congenital amaurosis, Blindness

0

To determine outcome measures for a clinical trial of Leber congenital amaurosis (LCA) associated with mutations in the GUCY2D gene.

Concepts: Informed consent, Ophthalmology, Clinical trial, Blindness, Amaurosis, ClinicalTrials.gov, GUCY2D, Leber's congenital amaurosis

0

Leber congenital amaurosis (LCA) is a severe retinal degenerative disease that manifests as blindness or poor vision in infancy. The purpose of this study was to clinically characterize and identify the cause of disease in a large inbred Bedouin Israeli tribe with LCA.

Concepts: GUCY2D, Ophthalmology, Amaurosis, Blindness, Leber's congenital amaurosis

0

Leber congenital amaurosis (LCA) is the most severe form of inherited retinal dystrophy. We have previously performed a mutational analysis of the known LCA-associated genes in probands with LCA by both Sanger and whole exome sequencing. In this study, whole exome sequencing was carried out on 66 new probabds with LCA. In conjunction with these data, the present study provides a comprehensive analysis of the spectrum and frequency of all known genes associated with retinal dystrophy in a total of 159 Chinese probands with LCA. The known genes responsible for all forms hereditary retinal dystrophy were included based on information from RetNet. The candidate variants were filtered by bioinformatics analysis and confirmed by Sanger sequencing. Potentially causative mutations were further validated in available family members. Overall, a total of 118 putative pathogenic mutations from 23 genes were identified in 56.6% (90/159) of probands. These mutations were harbored in 13 LCA-associated genes and in ten genes related to other forms of retinal dystrophy. The most frequently mutated gene in probands with LCA was GUCY2D (10.7%, 17/159). A series of mutational analyses suggests that all known genes associated with retinal dystrophy account for 56.6% of Chinese patients with LCA. A comprehensive molecular genetic analysis of Chinese patients with LCA provides an overview of the spectrum and frequency of ethno-specific mutations of all known genes, as well as indications about other unknown genes in the remaining probands who lacked identified mutations.

Concepts: GUCY2D, Amaurosis, Gene, Molecular biology, Leber's congenital amaurosis, DNA, Mutation, Genetics

0

Photoreceptor ROS-GC1, a prototype subfamily member of the membrane guanylate cyclase family, is a central component of phototransduction. It is a single transmembrane-spanning protein, composed of modular blocks. In rods, guanylate cyclase activating proteins (GCAPs) 1 and 2 bind to its juxtamembrane domain (JMD) and the C-terminal extension, respectively, to accelerate cyclic GMP synthesis when Ca(2+) levels are low. In cones, the additional expression of the Ca(2+)-dependent guanylate cyclase activating protein (CD-GCAP) S100B which binds to its C-terminal extension, supports acceleration of cyclic GMP synthesis at high Ca(2+) levels. Independent of Ca(2+), ROS-GC1 activity is also stimulated directly by bicarbonate binding to the core catalytic domain (CCD). Several enticing molecular features of this transduction system are revealed in the present study. In combination, bicarbonate and Ca(2+)-dependent modulators raised maximal ROS-GC activity to levels that exceeded the sum of their individual effects. The F(514)S mutation in ROS-GC1 that causes blindness in type 1 Leber’s congenital amaurosis (LCA) severely reduced basal ROS-GC1 activity. GCAP2 and S100B Ca(2+) signaling modes remained functional, while the GCAP1-modulated mode was diminished. Bicarbonate nearly restored basal activity as well as GCAP2- and S100B-stimulated activities of the F(514)S mutant to normal levels but could not resurrect GCAP1 stimulation. We conclude that GCAP1 and GCAP2 forge distinct pathways through domain-specific modules of ROS-GC1 whereas the S100B and GCAP2 pathways may overlap. The synergistic interlinking of bicarbonate to GCAPs- and S100B-modulated pathways intensifies and tunes the dependence of cyclic GMP synthesis on intracellular Ca(2+). Our study challenges the recently proposed GCAP1 and GCAP2 “overlapping” phototransduction model (Peshenko et al., 2015b).

Concepts: Molecular biology, Amaurosis, Protein, GUCY2D, Guanylate cyclase, Photoreceptor cell, Leber's congenital amaurosis, Blindness

0

GUCY2D encodes retinal guanylate cylase-1 (retGC1), a protein that plays a pivotal role in the recovery phase of phototransduction. Mutations in GUCY2D are associated with a leading cause of recessive Leber congenital amaurosis (LCA1). Patients present within the first year of life with aberrant or unrecordable electroretinogram (ERG), nystagmus and a relatively normal fundus. Aside from abnormalities in the outer segments of foveal cones and, in some patients, foveal cone loss, LCA1 patients retain normal retinal laminar architecture suggesting they may be good candidates for gene replacement therapy. Several animal models of LCA1, both naturally occurring and engineered, have been characterized and provide valuable tools for translational studies. This mini-review will summarize the phenotypes of these models and describe how each has been instrumental in proof of concept studies to develop a gene replacement therapy for GUCY2D-LCA1.

Concepts: Eye, Blindness, Amaurosis, Pathologic nystagmus, GUCY2D, Ophthalmology, Retina, Leber's congenital amaurosis

0

Retinal membrane guanylyl cyclase 1 (RetGC1) regulated by guanylyl cyclase activating proteins (GCAPs) controls photoreceptor recovery and when mutated causes blinding disorders. We evaluated the principal models of how GCAP1 and GCAP2 bind RetGC1 - through a shared docking interface versus independent binding sites formed by distant portions of the cyclase intracellular domain. At near-saturating concentrations, GCAP1 and GCAP2 activated RetGC1 from HEK293 cells and RetGC2(-/-)GCAPs1,2(-/-) mouse retinas in a non-additive fashion. The Met26Arg GCAP1, which binds but does not activate RetGC1, suppressed activation of recombinant and native RetGC1 by competing with both GCAP1 and GCAP2. Untagged GCAP1 displaced both GCAP1-GFP and GCAP2-GFP from the complex with RetGC1 in HEK293 cells. The intracellular segment of a natriuretic peptide receptor A (NPRA) guanylyl cyclase failed to bind GCAPs, but replacing its kinase-homology (KHD) and dimerization (DD) domains with those from RetGC1 restored GCAP1 and GCAP2 binding by the hybrid cyclase and its GCAP-dependent regulation. Deletion of the Tyr1016-Ser1103 fragment in RetGC1 did not block GCAP2 binding to the cyclase. In contrast, substitutions in KHD, Trp708Arg and Ile734Thr, linked to Leber congenital amaurosis (LCA) prevented binding of both GCAP1GFP and GCAP2GFP. Our results demonstrate that GCAPs cannot regulate RetGC1 using independent primary binding sites. Instead, GCAP1 and GCAP2 bind with the cyclase molecule in a mutually exclusive manner using a common or overlapping binding site(s) in the Arg488-Arg851 portion of RetGC1, and mutations in that region causing congenital LCA blindness disrupt activation of the cyclase by both GCAP1 and GCAP2.

Concepts: Regulation, Binding, Amaurosis, GUCY2D, Protein, Leber's congenital amaurosis, DNA, Blindness