Discover the most talked about and latest scientific content & concepts.

Concept: Guano


Coupled measurements of nitrate (NO3(-)), nitrogen (N), and oxygen (O) isotopic composition (δ(15)NNO3 and δ(18)ONO3) were used to investigate the sources and processes of N cycling, while the microbial source tracking (MST) method was used to identify microbiological pollution in the surface water of the Sava River Basin (SRB) in autumn in 2014 and 2015 during high and low water discharge. Atmospheric nitrate deposition or nitrate-containing fertilizers were found not to be significant sources of riverine nitrate in the SRB. The ranges of isotope values suggest that NO3(-) in the SRB derives from soil nitrification, sewage, and/or manure, which were further supported by MST analysis. Microbiological indicators show the existence of hotspots of fecal pollution in the SRB, which are human associated. Long-term observations indicate persistent fecal contamination at selected locations caused by continuous discharge of untreated wastewaters into the SRB.

Concepts: Bacteria, Water, Nitrogen, Hydrology, Isotope, Guano, Manure, Danube


ETHNOPHARMACOLOGICAL RELEVANCE: Red edible bird’s nests are regarded as of higher beneficial value for health and hence fetch a higher price than the white ones. Their red colour remains a myth. AIM OF THE STUDY: To determine if white edible bird’s nests can turn red by vapours generated from sodium nitrite in acidic conditions and by vapours from ‘bird soil’. MATERIALS AND METHODS: White edible bird’s nests were exposed to vapours from sodium nitrite dissolved in 2% HCl or from ‘bird soil’ in hot and humid conditions. CONCLUSIONS: Vapours from sodium nitrite dissolved in 2% HCl or from ‘bird soil’ containing guano droppings from swiftlet houses were able to turn white edible bird’s nests red. The reddening agent in ‘bird soil’ was water-soluble and heat-stable. The red colour of edible bird’s nests is likely caused by the environmental factors in cave interiors and swiftlet houses.

Concepts: Ammonia, Color, Green, Red, White, Primary color, Guano, Manure


We report the detection of high-titre anti-Histoplasma capsulatum IgM in the serum of three young adult males occupationally exposed to bat guano. Multidrug treatment with trimethoprim- sulfamethoxazole was started, followed by ciprofloxacin, clarithromycin, metamizole sodium, rifampicin/isoniazid/pyrazinamide, moxifloxacin and lastly amphotericin B and ceftriaxone. Despite treatment the condition of one patient deteriorated, and he died 23 days after exposure. The other two patients recovered after receiving similar therapy with the addition of voriconazole. They are currently being treated with itraconazole for a 1-year period.

Concepts: Patient, Amphotericin B, Bat, Antifungals, Ergosterol, Histoplasmosis, Guano, World Health Organization essential medicines


This study analyzes the influence of various fertilizer management practices on crop yield and soil organic carbon (SOC) based on the long-term field observations and modelling. Data covering 11 years from 8 long-term field trials were included, representing a range of typical soil, climate, and agro-ecosystems in China. The process-based model EPIC (Environmental Policy Integrated Climate model) was used to simulate the response of crop yield and SOC to various fertilization regimes. The results showed that the yield and SOC under additional manure application treatment were the highest while the yield under control treatment was the lowest (30%-50% of NPK yield) at all sites. The SOC in northern sites appeared more dynamic than that in southern sites. The variance partitioning analysis (VPA) showed more variance of crop yield could be explained by the fertilization factor (42%), including synthetic nitrogen (N), phosphorus (P), potassium (K) fertilizers, and fertilizer NPK combined with manure. The interactive influence of soil (total N, P, K, and available N, P, K) and climate factors (mean annual temperature and precipitation) determine the largest part of the SOC variance (32%). EPIC performs well in simulating both the dynamics of crop yield (NRMSE = 32% and 31% for yield calibration and validation) and SOC (NRMSE = 13% and 19% for SOC calibration and validation) under diverse fertilization practices in China. EPIC can assist in predicting the impacts of different fertilization regimes on crop growth and soil carbon dynamics, and contribute to the optimization of fertilizer management for different areas in China.

Concepts: Fertilizer, Soil, Nitrogen, Climate change, Potassium, Phosphorus, Guano, Manure


Insectivorous bats have often been touted as biological control for mosquito populations. However, mosquitoes generally represent only a small proportion of bat diet. Given the small size of mosquitoes, restrictions imposed on prey detectability by low frequency echolocation, and variable field metabolic rates (FMR), mosquitoes may not be available to or profitable for all bats. This study investigated whether consumption of mosquitoes was influenced by bat size, which is negatively correlated with echolocation frequency but positively correlated with bat FMR. To assess this, we investigated diets of five eastern Australian bat species (Vespadelus vulturnus Thomas, V. pumilus Gray, Miniopterus australis Tomes, Nyctophilus gouldi Tomes and Chalinolobus gouldii Gray) ranging in size from 4-14 g in coastal forest, using molecular analysis of fecal DNA. Abundances of potential mosquito and non-mosquito prey were concurrently measured to provide data on relative prey abundance. Aedes vigilax was locally the most abundant mosquito species, while Lepidoptera the most abundant insect order. A diverse range of prey was detected in bat feces, although members of Lepidoptera dominated, reflecting relative abundance at trap sites. Consumption of mosquitoes was restricted to V. vulturnus and V. pumilus, two smaller sized bats (4 and 4.5 g). Although mosquitoes were not commonly detected in feces of V. pumilus, they were present in feces of 55 % of V. vulturnus individuals. To meet nightly FMR requirements, Vespadelus spp. would need to consume ~600-660 mosquitoes on a mosquito-only diet, or ~160-180 similar sized moths on a moth-only diet. Lower relative profitability of mosquitoes may provide an explanation for the low level of mosquito consumption among these bats and the absence of mosquitoes in feces of larger bats. Smaller sized bats, especially V. vulturnus, are likely to be those most sensitive to reductions in mosquito abundance and should be monitored during mosquito control activities.

Concepts: Insect, Mosquito, Animal echolocation, Aedes, Bat, Abundance of the chemical elements, Microbat, Guano


Bat guano is a relatively untapped reservoir of information, having great utility as a DNA source because it is often available at roosts even when bats are not and is an easy type of sample to collect from a difficult-to-study mammalian order. Recent advances from microbial community studies in primer design, sequencing, and analysis enable fast, accurate, and cost-effective species identification. Here, we borrow from this discipline to develop an order-wide DNA mini-barcode assay (Species from Feces) based on a segment of the mitochondrial gene cytochrome c oxidase I (COI). The assay works effectively with fecal DNA and is conveniently transferable to low-cost, high-throughput Illumina MiSeq technology that also allows simultaneous pairing with other markers. Our PCR primers target a region of COI that is highly discriminatory among Chiroptera (92% species-level identification of barcoded species), and are sufficiently degenerate to allow hybridization across diverse bat taxa. We successfully validated our system with 54 bat species across both suborders. Despite abundant arthropod prey DNA in guano, our primers were highly specific to bats; no arthropod DNA was detected in thousands of feces run on Sanger and Illumina platforms. The assay is extendable to fecal pellets of unknown age as well as individual and pooled guano, to allow for individual (using singular fecal pellets) and community (using combined pellets collected from across long-term roost sites) analyses. We developed a searchable database ( that allows users to determine the discriminatory capability of our markers for bat species of interest. Our assay has applications worldwide for examining disease impacts on vulnerable species, determining species assemblages within roosts, and assessing the presence of bat species that are vulnerable or facing extinction. The development and analytical pathways are rapid, reliable, and inexpensive, and can be applied to ecology and conservation studies of other taxa.

Concepts: DNA, Evolution, Polymerase chain reaction, Mitochondrion, Mammal, Feces, Bat, Guano


Human consumption of bats poses an increasing public health threat globally. Communities in which bat guano is mined from caves have extensive exposure to bat excreta, often harvest bats for consumption, and are at risk for bat-borne diseases.

Concepts: Health, Epidemiology, Insect, Mammal, Primate, Seabird, Bat, Guano


The long-fingered bat Myotis capaccinii is a European trawling bat reported to feed on fish in several Mediterranean locations, but the ecological circumstances of this behavior have not yet been studied. To elucidate the importance of fishing in this bat’s diet, we evaluated the frequency and seasonal variation of fish remains in 3,000 fecal pellets collected from M. capaccinii at a nursery roost in Dénia (Eastern Iberian Peninsula) in 2008, 2009, and 2010. Fish consumption occurred evenly throughout the year. All otoliths found in feces were identified as belonging to the surface-feeding fish Gambusia holbrooki. Measuring otoliths, we estimated that the mean size of consumed fish was significantly smaller than the mean measured for available fish, suggesting that the long-fingered bat’s relatively small body may constrain its handling of larger prey. Of note, one bat had eaten 15 fish, showing that fish may be a locally or seasonally important trophic resource for this species. By capturing 15 bats and radio-tracking the four with the most fish remains in their droppings, we also identified fishing areas, including a single fishing ground comprising several ponds within a golf course. Ponds hold a high density of G. holbrooki, suggesting that the amount of fish at the water surface may be the principal factor triggering fishing. The observed six-fold increase in percentage of consumed fish across the study period may be related to recent pond-building in the area. We discuss whether this quick behavioral response is a novel feature of M. capaccinii or an intrinsic feature that has erupted and faded locally along the species' history.

Concepts: Coprophagia, Season, Feces, Fisheries, Guano, Wild fisheries, Fisherman, Eastern mosquitofish


Dairy farms generate a considerable amount of manure, which is applied in cropland as fertilizer. While the use of manure as fertilizer reduces the application of chemical fertilizers, the main concern with regards to manure application is microbial pollution. Manure is a reservoir of a broad range of microbial populations, including pathogens, which have potential to cause contamination and pose risks to public and animal health. Despite the widespread use of manure fertilizer, the change in microbial diversity of manure under various treatment processes is still not well-understood. We hypothesize that the microbial population of animal waste changes with manure handling used in a farm environment. Consequential microbial risk caused by animal manure may depend on manure handling. In this study, a reconnaissance effort for sampling dairy manure in California Central Valley followed by 16S rRNA analysis of content and diversity was undertaken to understand the microbiome of manure after various handling processes. The microbial community analysis of manure revealed that the population in liquid manure differs from that in solid manure. For instance, the bacteria of genus Sulfuriomonas were unique in liquid samples, while the bacteria of genus Thermos were observed only in solid samples. Bacteria of genus Clostridium were present in both solid and liquid samples. The population among liquid samples was comparable, as was the population among solid samples. These findings suggest that the mode of manure application (i.e., liquid versus solid) could have a potential impact on the microbiome of cropland receiving manure as fertilizers.

Concepts: Microbiology, Fertilizer, Milk, Nitrogen, 16S ribosomal RNA, Cattle, Guano, Manure


Seabird excrements (guano) have been preserved in the arid climate of Northern Chile since at least the Pliocene. The deposits of marine organic material in coastal areas potentially open a window into the present and past composition of the coastal ocean and its food web. We use the stable isotope composition of nitrogen and carbon as well as element contents to compare the principal prey of the birds, the Peruvian anchovy, with the composition of modern guano. We also investigate the impact of diagenetic changes on the isotopic composition and elemental contents of the pure ornithogenic sediments, starting with modern stratified deposits and extending to fossil guano. Where possible, 14C systematics is used for age information. The nitrogen and carbon isotopic composition of the marine prey (Peruvian anchovy) of the birds is complex as it shows strong systematic variations with latitude. The detailed study of a modern profile that represents a few years of guano deposition up to present reveals systematic changes in nitrogen and carbon isotopic composition towards heavier values that increase with age, i.e. depth. Only the uppermost, youngest layers of modern guano show compositional affinity to the prey of the birds. In the profile, the simultaneous loss of nitrogen and carbon occurs by degassing, and non-volatile elements like phosphorous and calcium are passively enriched in the residual guano. Fossil guano deposits are very low in nitrogen and low in carbon contents, and show very heavy nitrogen isotopic compositions. One result of the study is that the use of guano for tracing nitrogen and carbon isotopic and elemental composition in the marine food web of the birds is restricted to fresh material. Despite systematic changes during diagenesis, there is little promise to retrieve reliable values of marine nitrogen and carbon signatures from older guano. However, the changes in isotopic composition from primary marine nitrogen isotopic signatures towards very heavy values generate a compositionally unique material. These compositions trace the presence of guano in natural ecosystems and its use as fertilizer in present and past agriculture.

Concepts: Present, Fertilizer, Chemical element, Carbon, Isotope, Fossil, Guano, Diagenesis