Discover the most talked about and latest scientific content & concepts.

Concept: Growth medium


Human pluripotent stem cells (hPSC) are used to study the early stages of human development in vitro and, increasingly due to somatic cell reprogramming, cellular and molecular mechanisms of disease. Cell culture medium is a critical factor for hPSC to maintain pluripotency and self-renewal. Numerous defined culture media have been empirically developed but never systematically optimized for culturing hPSC. We applied design of experiments (DOE), a powerful statistical tool, to improve the medium formulation for hPSC. Using pluripotency and cell growth as read-outs, we determined the optimal concentration of both basic fibroblast growth factor (bFGF) and neuregulin-1 beta 1 (NRG1β1). The resulting formulation, named iDEAL, improved the maintenance and passage of hPSC in both normal and stressful conditions, and affected trimethylated histone 3 lysine 27 (H3K27me3) epigenetic status after genetic reprogramming. It also enhances efficient hPSC plating as single cells. Altogether, iDEAL potentially allows scalable and controllable hPSC culture routine in translational research. Our DOE strategy could also be applied to hPSC differentiation protocols, which often require numerous and complex cell culture media.

Concepts: DNA, Bacteria, Developmental biology, Stem cell, Cell biology, Yeast, Cell culture, Growth medium


Light is extensively used to study cells in real time (live cell imaging), separate cells using fluorescence activated cell sorting (FACS) and control cellular functions with light sensitive proteins (Optogenetics). However, photo-sensitive molecules inside cells and in standard cell culture media generate toxic by-products that interfere with cellular functions and cell viability when exposed to light. Here we show that primary cells from the rat central nervous system respond differently to photo-toxicity, in that astrocytes and microglia undergo morphological changes, while in developing neurons and oligodendrocyte progenitor cells (OPCs) it induces cellular death. To prevent photo-toxicity and to allow for long-term photo-stimulation without causing cellular damage, we formulated new photo-inert media called MEMO and NEUMO, and an antioxidant rich and serum free supplement called SOS. These new media reduced the detrimental effects caused by light and allowed cells to endure up to twenty times more light exposure without adverse effects, thus bypassing the optical constraints previously limiting experiments.

Concepts: Central nervous system, Nervous system, Neuron, Brain, Bacteria, Cell biology, Cell culture, Growth medium


Microbiologists have been using agar growth medium for over 120 years. It revolutionized microbiology in the 1890’s when microbiologists were seeking effective methods to isolate microorganisms, which led to the successful cultivation of microorganisms as single clones. But there has been a disparity between total cell counts and cultivable cell counts on plates, often referred to as the “great plate count anomaly”, that has long been a phenomenon that still remains unsolved. Here we report that a common practice microbiologists have been employing to prepare agar medium has a hidden pitfall: when phosphate was autoclaved together with agar to prepare solid growth media (PT medium), total colony counts were remarkably lower when compared with those grown on agar plates in which phosphate and agar were separately autoclaved and mixed right before solidification (PS medium). We used a pure culture Gemmatimonas aurantiaca T-27(T) and three representative sources of environmental samples, soil, sediment and water, as inocula and compared colony counts between PT and PS agar plates. There were higher numbers of colony forming units (CFUs) on PS medium compared to PT medium using G. aurantiaca or any of the environmental samples. Chemical analysis of PT agar plates suggested that hydrogen peroxide was contributing to growth inhibition. Comparison of 454 pyrosequences of the environmental samples to the isolates revealed that taxa grown on PS medium were more reflective of the original community structure than those grown on PT medium. Moreover, more hitherto-uncultivated microbes grew on PS than on PT medium.

Concepts: Bacteria, Metabolism, Microbiology, Agar, Agar plate, XLD agar, Growth medium, Petri dish


Extracellular vesicles (EVs) are involved in intercellular communication and affect processes including immune and antiviral responses. Blood serum, a common cell culture medium component, is replete with EVs and must be depleted prior to EV-related experiments. The extent to which depletion processes deplete non-EV particles is incompletely understood, but depleted serum is associated with reduced viability and growth in cell culture. Here, we examined whether serum depleted by two methods affected HIV-1 replication. In cell lines, including HIV-1 latency models, increased HIV-1 production was observed, along with changes in cell behavior and viability. Add-back of ultracentrifuge pellets (enriched in EVs but possibly other particles) rescued baseline HIV-1 production. Primary cells were less sensitive to serum depletion processes. Virus produced under processed serum conditions was more infectious. Finally, changes in cellular metabolism, surface markers, and gene expression, but not miRNA profiles, were associated with depleted serum culture. In conclusion, depleted serum conditions have a substantial effect on HIV-1 production and infectivity. Dependence of cell cultures on “whole serum” must be examined carefully along with other experimental variables, keeping in mind that the effects of EVs may be accompanied by or confused with those of closely associated or physically similar particles.

Concepts: Gene, Cell nucleus, Cell, Bacteria, Organism, Cell biology, Cell culture, Growth medium


Textured surfaces with periodic topographical features and long-range order are highly attractive for directing cell-material interactions. They mimic physiological environments more accurately than planar surfaces and can fundamentally alter cell alignment, shape, gene expression, and cellular assembly into superstructures or microtissues. Here we demonstrate for the first time that wrinkled graphene-based surfaces are suitable as textured cell attachment substrates, and that engineered wrinkling can dramatically alter cell alignment and morphology. The wrinkled surfaces are fabricated by graphene oxide wet deposition onto pre-stretched elastomers followed by relaxation and mild thermal treatment to stabilize the films in cell culture medium. Multilayer graphene oxide films form periodic, delaminated buckle textures whose wavelengths and amplitudes can be systematically tuned by variation in the wet deposition process. Human and murine fibroblasts attach to these textured films and remain viable, while developing pronounced alignment and elongation relative to those on planar graphene controls. Compared to lithographic patterning of nanogratings, this method has advantages in the simplicity and scalability of fabrication, as well as the opportunity to couple the use of topographic cues with the unique conductive, adsorptive, or barrier properties of graphene materials for functional biomedical devices.

Concepts: Gene, Gene expression, Cell, Bacteria, Cell culture, Topography, Growth medium, Topographic map


The supplementation of culture medium with fetal bovine serum (FBS, also referred to as ‘fetal calf serum’) is still common practice in cell culture applications. Due to a number of disadvantages in terms of quality and reproducibility of in vitro data, animal welfare concerns, and in light of recent cases of fraudulent marketing, the search for alternatives and the development of serum-free medium formulations gained global attention. Here, we report on the 3rd Workshop on FBS, Serum Alternatives and Serum-free Media, where (a) regulatory aspects, (b) the serum dilemma, © alternatives to FBS, (d) case-studies of serum-free in vitro applications, and (e) the establishment of serum-free databases, were discussed. The whole process of obtaining blood from a living calf fetus to using the FBS produced from it for scientific purposes is de facto not yet legally regulated, despite the existing EU-Directive 2010/63/EU on the use of animals for scientific purposes. Together with above mentioned challenges, several strategies have been developed to reduce or replace FBS in cell culture media in terms of the 3Rs (Refinement, Reduction, Replacement). Most recently, releasates of activated human donor thrombocytes (human platelet lysates) have been shown to be one of the most promising serum alternatives when chemically defined media are not yet an option. Additionally, new developments in cell-based assay techniques, advanced organ-on-chip and microphysiological systems are covered in this report. Chemically-defined serum-free media are shown to be the ultimate goal for the majority of culture systems, and examples are discussed.

Concepts: Bacteria, Cell culture, Growth medium


The trematode Schistosoma mansoni Sm14 antigen was expressed in the yeast Pichia pastoris and secreted into the culture medium at yields of approximately 250 mg L(-1). Sm14 belongs to a family of fatty-acid binding proteins and appears to play an important role in uptake, transport, and compartmentalization of lipids in S. mansoni and it is a potential vaccine candidate in both humans and domesticated animals. The Sm14 gene was codon-optimized for expression in P. pastoris, and placed under transcription of the strong methanol inducible AOX1 promoter. Mut(+) transformants were selected and used in fed-batch cultivation using a 2.5L fermenter equipped with an on-line methanol control system in order to maintain constant methanol levels during induction. Optimal conditions for the expression of Sm14 by P. pastoris were found to be: dissolved oxygen at 40%, temperature of 25 °C, pH 5.0, and a constant methanol concentration of 1 gL(-1). Our results show that a correctly processed Sm14 was secreted into the culture medium at levels of approximately 250  mg L(-1). Sm14 from clarified culture medium was purified using a two-step procedure: anion-exchange chromatography followed by hydrophobic interaction chromatography, resulting in >95% purity with a final yield of 40% from the starting cell culture medium. This product has been tested in preliminary clinical trials and shown to elicit an antibody response with no adverse reactions.

Concepts: Protein, Gene, Gene expression, Cell, Bacteria, Schistosoma, Digenea, Growth medium


The practice of counting bacterial colony forming units on agar plates has long been used as a method to estimate the concentration of live bacteria in culture. However, due to the laborious and potentially error prone nature of this measurement technique, an alternative method is desirable. Recent technologic advancements have facilitated the development of automated colony counting systems, which reduce errors introduced during the manual counting process and recording of information. An additional benefit is the significant reduction in time taken to analyse colony counting data. Whilst automated counting procedures have been validated for a number of microorganisms, the process has not been successful for all bacteria due to the requirement for a relatively high contrast between bacterial colonies and growth medium. The purpose of this study was to validate an automated counting system for use with group A Streptococcus (GAS).

Concepts: Photosynthesis, Bacteria, Microbiology, Streptococcus, Validation, Number, Natural number, Growth medium


In this study, eight commercially available, chemically defined Chinese hamster ovary (CHO) cell culture media from different vendors were evaluated in batch culture using an IgG-producing CHO DG44 cell line as a model. Medium adaptation revealed that the occurrence of even small aggregates might be a good indicator of cell growth performance in subsequent high cell density cultures. Batch experiments confirmed that the culture medium has a significant impact on bioprocess performance, but high amino acid concentrations alone were not sufficient to ensure superior cell growth and high antibody production. However, some key amino acids that were limiting in most media could be identified. Unbalanced glucose and amino acids led to high cell-specific lactate and ammonium production rates. In some media, persistently high glucose concentrations probably induced the suppression of respiration and oxidative phosphorylation, known as Crabtree effect, which resulted in high cell-specific glycolysis rates along with a continuous and high lactate production. In additional experiments, two of the eight basal media were supplemented with feeds from two different manufacturers in six combinations, in order to understand the combined impact of media and feeds on cell metabolism in a CHO fed-batch process. Cell growth, nutrient consumption and metabolite production rates, antibody production, and IgG quality were evaluated in detail. Concentrated feed supplements boosted cell concentrations almost threefold and antibody titers up to sevenfold. Depending on the fed-batch strategy, fourfold higher peak cell concentrations and eightfold increased IgG titers (up to 5.8 g/L) were achieved. The glycolytic flux was remarkably similar among the fed-batches; however, substantially different specific lactate production rates were observed in the different media and feed combinations. Further analysis revealed that in addition to the feed additives, the basal medium can make a considerable contribution to the ammonium metabolism of the cells. The glycosylation of the recombinant antibody was influenced by the selection of basal medium and feeds. Differences of up to 50 % in the monogalacto-fucosylated (G1F) and high mannose fraction of the IgG were observed.

Concepts: Protein, Bacteria, Amino acid, Metabolism, Yeast, Cell culture, Chinese hamster ovary cell, Growth medium


The type of bacterial culture medium is an important consideration during design of any experimental protocol. The aim of this study was to understand the impact of medium choice on bacterial gene expression and physiology by comparing the transcriptome of Salmonella enterica SL1344 after growth in the widely used LB broth or the rationally designed MOPS minimal medium. Transcriptomics showed that after growth in MOPS minimal media, compared to LB, there was increased expression of 42 genes involved in amino acid synthesis and 23 genes coding for ABC transporters. Seven flagellar genes had decreased expression after growth in MOPS minimal medium and this correlated with a decreased motility. In both MOPS minimal medium and MEM expression of genes from SPI-2 was increased and the adhesion of S. Typhimurium to intestinal epithelial cells was higher compared to the levels after growth in LB. However, SL1344 invasion was not significantly altered by growth in either MOPs minimal media or MEM. Expression of SPI-2 was also measured using chromosomal GFP reporter fusions followed by flow cytometry which showed, for the first time, that the reduction in SPI-2 transcript after growth in different media related to a reduction in the proportion of the bacterial population expressing SPI-2. These data highlight the profound differences in the global transcriptome after in vitro growth in different media and show that choice of medium should be considered carefully during experimental design, particularly when virulence related phenotypes are being measured.

Concepts: DNA, Gene, Gene expression, Bacteria, Evolution, Microbiology, Salmonella enterica, Growth medium