SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Greenland

174

Despite numerous investigations, the dynamical origins of the Medieval Climate Anomaly and the Little Ice Age remain uncertain. A major unresolved issue relating to internal climate dynamics is the mode and tempo of Atlantic meridional overturning circulation variability, and the significance of decadal-to-centennial scale changes in Atlantic meridional overturning circulation strength in regulating the climate of the last millennium. Here we use the time-constrained high-resolution local radiocarbon reservoir age offset derived from an absolutely dated annually resolved shell chronology spanning the past 1,350 years, to reconstruct changes in surface ocean circulation and climate. The water mass tracer data presented here from the North Icelandic shelf, combined with previously published data from the Arctic and subtropical Atlantic, show that surface Atlantic meridional overturning circulation dynamics likely amplified the relatively warm conditions during the Medieval Climate Anomaly and the relatively cool conditions during the Little Ice Age within the North Atlantic sector.

Concepts: Earth, Climate, Atlantic Ocean, Ocean, Arctic Ocean, Greenland, Thermohaline circulation, North Atlantic Deep Water

141

Previously, a large platinum (Pt) anomaly was reported in the Greenland ice sheet at the Younger Dryas boundary (YDB) (12,800 Cal B.P.). In order to evaluate its geographic extent, fire-assay and inductively coupled plasma mass spectrometry (FA and ICP-MS) elemental analyses were performed on 11 widely separated archaeological bulk sedimentary sequences. We document discovery of a distinct Pt anomaly spread widely across North America and dating to the Younger Dryas (YD) onset. The apparent synchroneity of this widespread YDB Pt anomaly is consistent with Greenland Ice Sheet Project 2 (GISP2) data that indicated atmospheric input of platinum-rich dust. We expect the Pt anomaly to serve as a widely-distributed time marker horizon (datum) for identification and correlation of the onset of the YD climatic episode at 12,800 Cal B.P. This Pt datum will facilitate the dating and correlating of archaeological, paleontological, and paleoenvironmental data between sequences, especially those with limited age control.

Concepts: Mass spectrometry, Earth, United States, Greenland ice sheet, North America, Paleontology, Greenland, Younger Dryas

105

The climatic mechanisms driving the shift from the Medieval Warm Period (MWP) to the Little Ice Age (LIA) in the North Atlantic region are debated. We use cosmogenic beryllium-10 dating to develop a moraine chronology with century-scale resolution over the last millennium and show that alpine glaciers in Baffin Island and western Greenland were at or near their maximum LIA configurations during the proposed general timing of the MWP. Complimentary paleoclimate proxy data suggest that the western North Atlantic region remained cool, whereas the eastern North Atlantic region was comparatively warmer during the MWP-a dipole pattern compatible with a persistent positive phase of the North Atlantic Oscillation. These results demonstrate that over the last millennium, glaciers approached their eventual LIA maxima before what is considered the classic LIA in the Northern Hemisphere. Furthermore, a relatively cool western North Atlantic region during the MWP has implications for understanding Norse migration patterns during the MWP. Our results, paired with other regional climate records, point to nonclimatic factors as contributing to the Norse exodus from the western North Atlantic region.

Concepts: Glacier, Atlantic Ocean, Europe, Ice core, Greenland, Little Ice Age, Historical climatology, Medieval Warm Period

99

The Greenland ice sheet (GIS) is losing mass at an increasing rate due to surface melt and flow acceleration in outlet glaciers. Currently, there is a large disagreement between observed and simulated ice flow, which may arise from inaccurate parameterization of basal motion, subglacial hydrology or geothermal heat sources. Recently it was suggested that there may be a hidden heat source beneath GIS caused by a higher than expected geothermal heat flux (GHF) from the Earth’s interior. Here we present the first direct measurements of GHF from beneath a deep fjord basin in Northeast Greenland. Temperature and salinity time series (2005-2015) in the deep stagnant basin water are used to quantify a GHF of 93 ± 21 mW m-2 which confirm previous indirect estimated values below GIS. A compilation of heat flux recordings from Greenland show the existence of geothermal heat sources beneath GIS and could explain high glacial ice speed areas such as the Northeast Greenland ice stream.

Concepts: Water, Ice sheet, Greenland ice sheet, Glacier, Greenland, Jakobshavn Isbræ, Ice stream, Glaciers

71

The demographic history of Greenland is characterized by recurrent migrations and extinctions since the first humans arrived 4,500 years ago. Our current understanding of these extinct cultures relies primarily on preserved fossils found in their archaeological deposits, which hold valuable information on past subsistence practices. However, some exploited taxa, though economically important, comprise only a small fraction of these sub-fossil assemblages. Here we reconstruct a comprehensive record of past subsistence economies in Greenland by sequencing ancient DNA from four well-described midden deposits. Our results confirm that the species found in the fossil record, like harp seal and ringed seal, were a vital part of Inuit subsistence, but also add a new dimension with evidence that caribou, walrus and whale species played a more prominent role for the survival of Paleo-Inuit cultures than previously reported. Most notably, we report evidence of bowhead whale exploitation by the Saqqaq culture 4,000 years ago.

Concepts: DNA, Evolution, Inuit, Fossil, Archaeology, Dinosaur, Greenland, Polar bear

61

The Atlantic meridional overturning circulation (AMOC) is a system of ocean currents that has an essential role in Earth’s climate, redistributing heat and influencing the carbon cycle1, 2. The AMOC has been shown to be weakening in recent years 1 ; this decline may reflect decadal-scale variability in convection in the Labrador Sea, but short observational datasets preclude a longer-term perspective on the modern state and variability of Labrador Sea convection and the AMOC1, 3-5. Here we provide several lines of palaeo-oceanographic evidence that Labrador Sea deep convection and the AMOC have been anomalously weak over the past 150 years or so (since the end of the Little Ice Age, LIA, approximately AD 1850) compared with the preceding 1,500 years. Our palaeoclimate reconstructions indicate that the transition occurred either as a predominantly abrupt shift towards the end of the LIA, or as a more gradual, continued decline over the past 150 years; this ambiguity probably arises from non-AMOC influences on the various proxies or from the different sensitivities of these proxies to individual components of the AMOC. We suggest that enhanced freshwater fluxes from the Arctic and Nordic seas towards the end of the LIA-sourced from melting glaciers and thickened sea ice that developed earlier in the LIA-weakened Labrador Sea convection and the AMOC. The lack of a subsequent recovery may have resulted from hysteresis or from twentieth-century melting of the Greenland Ice Sheet 6 . Our results suggest that recent decadal variability in Labrador Sea convection and the AMOC has occurred during an atypical, weak background state. Future work should aim to constrain the roles of internal climate variability and early anthropogenic forcing in the AMOC weakening described here.

Concepts: Earth, Glacier, Climate, Climate change, Arctic Ocean, Global warming, Greenland, Thermohaline circulation

55

The supply of freshwater to fjord systems in Greenland is increasing as a result of climate change-induced acceleration in ice sheet melt. However, insight into the marine implications of the melt water is impaired by lack of observations demonstrating the fate of freshwater along the Greenland coast and providing evaluation basis for ocean models. Here we present 13 years of summer measurements along a 120 km transect in Young Sound, Northeast Greenland and show that sub-surface coastal waters are decreasing in salinity with an average rate of 0.12 ± 0.05 per year. This is the first observational evidence of a significant freshening on decadal scale of the waters surrounding the ice sheet and comes from a region where ice sheet melt has been less significant. It implies that ice sheet dynamics in Northeast Greenland could be of key importance as freshwater is retained in southward flowing coastal currents thus reducing density of water masses influencing major deep water formation areas in the Subarctic Atlantic Ocean. Ultimately, the observed freshening could have implications for the Atlantic meridional overturning circulation.

Concepts: Water, Climate, Atlantic Ocean, Climate change, Arctic Ocean, Antarctica, Greenland, North Atlantic Deep Water

49

Surface-ocean circulation in the northern Atlantic Ocean influences Northern Hemisphere climate. Century-scale circulation variability in the Atlantic Ocean, however, is poorly constrained due to insufficiently-resolved paleoceanographic records. Here we present a replicated reconstruction of sea-surface temperature and salinity from a site sensitive to North Atlantic circulation in the Gulf of Mexico which reveals pronounced centennial-scale variability over the late Holocene. We find significant correlations on these timescales between salinity changes in the Atlantic, a diagnostic parameter of circulation, and widespread precipitation anomalies using three approaches: multiproxy synthesis, observational datasets, and a transient simulation. Our results demonstrate links between centennial changes in northern Atlantic surface-circulation and hydroclimate changes in the adjacent continents over the late Holocene. Notably, our findings reveal that weakened surface-circulation in the Atlantic Ocean was concomitant with well-documented rainfall anomalies in the Western Hemisphere during the Little Ice Age.

Concepts: Atlantic Ocean, Pacific Ocean, Ocean, Tropical cyclone, Gulf of Mexico, Antarctica, Equator, Greenland

45

The precise reason for the differences and out-of-phase relationship between the abrupt Dansgaard-Oeschger warmings in the Nordic seas and Greenland ice cores and the gradual warmings in the south-central Atlantic and Antarctic ice cores is poorly understood. Termed the bipolar seesaw, the differences are apparently linked to perturbations in the ocean circulation pattern. Here we show that surface and intermediate-depth water south of Iceland warmed gradually synchronously with the Antarctic warming and out of phase with the abrupt warming of the Nordic seas and over Greenland. The hinge line between areas showing abrupt and gradual warming was close to the Greenland-Scotland Ridge and the marine system appears to be a ‘push-and-pull’ system rather than a seesaw system. ‘Pull’ during the warm interstadials, when convection in the Nordic seas was active; ‘push’ during the cold stadials, when convection stopped and warm water from the south-central Atlantic pushed northward gradually warming the North Atlantic and Nordic seas.

Concepts: Atlantic Ocean, Ocean, Antarctica, Ice core, Nordic countries, Greenland, Southern Ocean, Bouvet Island

34

Reconstructing the past variability of Arctic sea ice provides an essential context for recent multi-year sea ice decline, although few quantitative reconstructions cover the Holocene period prior to the earliest historical records 1,200 years ago. Photochemical recycling of bromine is observed over first-year, or seasonal, sea ice in so-called “bromine explosions” and we employ a 1-D chemistry transport model to quantify processes of bromine enrichment over first-year sea ice and depositional transport over multi-year sea ice and land ice. We report bromine enrichment in the Northwest Greenland Eemian NEEM ice core since the end of the Eemian interglacial 120,000 years ago, finding the maximum extension of first-year sea ice occurred approximately 9,000 years ago during the Holocene climate optimum, when Greenland temperatures were 2 to 3 °C above present values. First-year sea ice extent was lowest during the glacial stadials suggesting complete coverage of the Arctic Ocean by multi-year sea ice. These findings demonstrate a clear relationship between temperature and first-year sea ice extent in the Arctic and suggest multi-year sea ice will continue to decline as polar amplification drives Arctic temperatures beyond the 2 °C global average warming target of the recent COP21 Paris climate agreement.

Concepts: Canada, Arctic Ocean, Arctic, Holocene, Glaciology, Greenland, Sea ice, Northwest Passage