SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Green

306

Is there a link between the color of a taxi and how many accidents it has? An analysis of 36 mo of detailed taxi, driver, and accident data (comprising millions of data points) from the largest taxi company in Singapore suggests that there is an explicit link. Yellow taxis had 6.1 fewer accidents per 1,000 taxis per month than blue taxis, a 9% reduction in accident probability. We rule out driver difference as an explanatory variable and empirically show that because yellow taxis are more noticeable than blue taxis-especially when in front of another vehicle, and in street lighting-other drivers can better avoid hitting them, directly reducing the accident rate. This finding can play a significant role when choosing colors for public transportation and may save lives as well as millions of dollars.

Concepts: Color, Green, Yellow, Primary color, Complementary color, Color wheel, Taxicab, Indigo

199

Synesthesia is a phenomenon where a stimulus produces consistent extraordinary subjective experiences. A relatively common type of synesthesia involves perception of color when viewing letters (e.g. the letter ‘a’ always appears as light blue). In this study, we examine whether traits typically regarded as markers of synesthesia can be acquired by simply reading in color.

Concepts: Light, Color, Green, Blue, Purple, Qualia, Synesthesia, Azure

175

Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Here we describe red, single-wavelength GECIs, “RCaMPs,” engineered from circular permutation of the thermostable red fluorescent protein mRuby. High-resolution crystal structures of mRuby, the red sensor RCaMP, and the recently published red GECI R-GECO1 give insight into the chromophore environments of the Ca-bound state of the sensors and the engineered protein domain interfaces of the different indicators. We characterized the biophysical properties and performance of RCaMP sensors and in , larvae, and larval zebrafish. Further, we demonstrate 2-color calcium imaging both within the same cell (registering mitochondrial and somatic [Ca]) and between two populations of cells: neurons and astrocytes. Finally, we perform integrated optogenetics experiments, wherein neural activation channelrhodopsin-2 (ChR2) or a red-shifted variant, and activity imaging RCaMP or GCaMP, are conducted simultaneously, with the ChR2/RCaMP pair providing independently addressable spectral channels. Using this paradigm, we measure calcium responses of naturalistic and ChR2-evoked muscle contractions in crawling . We systematically compare the RCaMP sensors to R-GECO1, in terms of action potential-evoked fluorescence increases in neurons, photobleaching, and photoswitching. R-GECO1 displays higher Ca affinity and larger dynamic range than RCaMP, but exhibits significant photoactivation with blue and green light, suggesting that integrated channelrhodopsin-based optogenetics using R-GECO1 may be subject to artifact. Finally, we create and test blue, cyan, and yellow variants engineered from GCaMP by rational design. This engineered set of chromatic variants facilitates new experiments in functional imaging and optogenetics.

Concepts: Nervous system, Neuron, Neuroscience, Green, Permutation, Image sensor, Channelrhodopsin, Cyan

172

A basic premise of the recently proffered color-in-context model is that the influence of color on psychological functioning varies as a function of the psychological context in which color is perceived. Some research has examined the appetitive and aversive implications of viewing the color red in romance- and achievement-relevant contexts, respectively, but in all existing empirical work approach and avoidance behavior has been studied in separate tasks and separate experiments. Research is needed to directly test whether red influences the same behavior differently depending entirely on psychological context.

Concepts: Psychology, Science, Color, Green, Red, Primary color, RGB color model, Visible spectrum

166

Some species of Talaromyces secrete large amounts of red pigments. Literature has linked this character to species such as Talaromyces purpurogenus, T. albobiverticillius, T. marneffei, and T. minioluteus often under earlier Penicillium names. Isolates identified as T. purpurogenus have been reported to be interesting industrially and they can produce extracellular enzymes and red pigments, but they can also produce mycotoxins such as rubratoxin A and B and luteoskyrin. Production of mycotoxins limits the use of isolates of a particular species in biotechnology. Talaromyces atroroseus sp. nov., described in this study, produces the azaphilone biosynthetic families mitorubrins and Monascus pigments without any production of mycotoxins. Within the red pigment producing clade, T. atroroseus resolved in a distinct clade separate from all the other species in multigene phylogenies (ITS, β-tubulin and RPB1), which confirm its unique nature. Talaromyces atroroseus resembles T. purpurogenus and T. albobiverticillius in producing red diffusible pigments, but differs from the latter two species by the production of glauconic acid, purpuride and ZG-1494α and by the dull to dark green, thick walled ellipsoidal conidia produced. The type strain of Talaromyces atroroseus is CBS 133442.

Concepts: Biology, Fungus, Phylogenetics, Green, Purple, White, Vermilion, Carmine

154

Many genetically encoded biosensors use Förster resonance energy transfer (FRET) to dynamically report biomolecular activities. While pairs of cyan and yellow fluorescent proteins (FPs) are most commonly used as FRET partner fluorophores, respectively, green and red FPs offer distinct advantages for FRET, such as greater spectral separation, less phototoxicity, and lower autofluorescence. We previously developed the green-red FRET pair Clover and mRuby2, which improves responsiveness in intramolecular FRET reporters with different designs. Here we report the engineering of brighter and more photostable variants, mClover3 and mRuby3. mClover3 improves photostability by 60% and mRuby3 by 200% over the previous generation of fluorophores. Notably, mRuby3 is also 35% brighter than mRuby2, making it both the brightest and most photostable monomeric red FP yet characterized. Furthermore, we developed a standardized methodology for assessing FP performance in mammalian cells as stand-alone markers and as FRET partners. We found that mClover3 or mRuby3 expression in mammalian cells provides the highest fluorescence signals of all jellyfish GFP or coral RFP derivatives, respectively. Finally, using mClover3 and mRuby3, we engineered an improved version of the CaMKIIα reporter Camuiα with a larger response amplitude.

Concepts: Better, Fluorescence, Gene, Cell, Improve, Green fluorescent protein, Green, Förster resonance energy transfer

149

Migraine headache is uniquely exacerbated by light. Using psychophysical assessments in patients with normal eyesight we found that green light exacerbates migraine headache significantly less than white, blue, amber or red lights. To delineate mechanisms, we used electroretinography and visual evoked potential recording in patients, and multi-unit recording of dura- and light-sensitive thalamic neurons in rats to show that green activates cone-driven retinal pathways to a lesser extent than white, blue and red; that thalamic neurons are most responsive to blue and least responsive to green; and that cortical responses to green are significantly smaller than those generated by blue, amber and red lights. These findings suggest that patients' experience with colour and migraine photophobia could originate in cone-driven retinal pathways, fine-tuned in relay thalamic neurons outside the main visual pathway, and preserved by the cortex. Additionally, the findings provide substrate for the soothing effects of green light.

Concepts: Brain, Light, Cerebral cortex, Migraine, Retina, Color, Green, Red

44

Eurasian Jay (Garrulus glandarius) feathers display periodic variations in the reflected colour from white through light blue, dark blue and black. We find the structures responsible for the colour are continuous in their size and spatially controlled by the degree of spinodal phase separation in the corresponding region of the feather barb. Blue structures have a well-defined broadband ultra-violet (UV) to blue wavelength distribution; the corresponding nanostructure has characteristic spinodal morphology with a lengthscale of order 150 nm. White regions have a larger 200 nm nanostructure, consistent with a spinodal process that has coarsened further, yielding broader wavelength white reflectance. Our analysis shows that nanostructure in single bird feather barbs can be varied continuously by controlling the time the keratin network is allowed to phase separate before mobility in the system is arrested. Dynamic scaling analysis of the single barb scattering data implies that the phase separation arrest mechanism is rapid and also distinct from the spinodal phase separation mechanism i.e. it is not gelation or intermolecular re-association. Any growing lengthscale using this spinodal phase separation approach must first traverse the UV and blue wavelength regions, growing the structure by coarsening, resulting in a broad distribution of domain sizes.

Concepts: Light, Bird, Color, Green, Feather, Black, Azure, Eurasian Jay

28

ETHNOPHARMACOLOGICAL RELEVANCE: Red edible bird’s nests are regarded as of higher beneficial value for health and hence fetch a higher price than the white ones. Their red colour remains a myth. AIM OF THE STUDY: To determine if white edible bird’s nests can turn red by vapours generated from sodium nitrite in acidic conditions and by vapours from ‘bird soil’. MATERIALS AND METHODS: White edible bird’s nests were exposed to vapours from sodium nitrite dissolved in 2% HCl or from ‘bird soil’ in hot and humid conditions. CONCLUSIONS: Vapours from sodium nitrite dissolved in 2% HCl or from ‘bird soil’ containing guano droppings from swiftlet houses were able to turn white edible bird’s nests red. The reddening agent in ‘bird soil’ was water-soluble and heat-stable. The red colour of edible bird’s nests is likely caused by the environmental factors in cave interiors and swiftlet houses.

Concepts: Ammonia, Color, Green, Red, White, Primary color, Guano, Manure

27

To fold or not to fold? It is shown that attached sugars play a defining role in the conformations adopted by a pair of novel SAA-derived foldamers in water and that these differences are reflected in the contrasting interactions of these glycofoldamers with various biological targets. C green, O red, N blue, H gray; green oval=mannose.

Concepts: Life, Ecology, Natural environment, Green, Red, Primary color, Aristotle, Cyan