SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Green tea

171

(-)-Epigallocatechin gallate (EGCG) is a major polyphenol component of green tea that has antioxidant activities. Lipopolysaccharide (LPS) induces inflammatory cytokine production and impairs blood-brain barrier (BBB) integrity. We examined the effect of EGCG on LPS-induced expression of the inflammatory cytokines in human cerebral microvascular endothelial cells (hCMECs) and BBB permeability.

Concepts: Inflammation, Cytokine, Antioxidant, Tea, Catechin, Green tea, Polyphenol, Epigallocatechin gallate

168

Catechins (flavan-3-ols), the most important secondary metabolites in the tea plant, have positive effects on human health and are crucial in defense against pathogens of the tea plant. The aim of this study was to elucidate the biosynthetic pathway of galloylated catechins in the tea plant. The results suggested that galloylated catechins were biosynthesized via 1-O-glucose ester-dependent two-step reactions by acyltransferases, which involved two enzymes, UDP-glucose: galloyl-1-O-β-D-glucosyltransferase (UGGT) and a newly discovered enzyme, epicatechin:1-O-galloyl-β-D-glucose O-galloyltransferase (ECGT). In the first reaction, the galloylated acyl donor β-glucogallin was biosynthesized by UGGT from gallic acid and uridine diphosphate glucose. In the second reaction, galloylated catechins were produced by ECGT catalysis from β-glucogallin and 2,3-cis-flavan-3-ol. 2,3-cis-flavan-3-ol and 1-O-galloyl-β-D-glucose were appropriate substrates of ECGT rather than 2,3-trans-flavan-3-ol and 1,2,3,4,6- pentagalloylglucose. Purification by more than 1641-fold to apparent homogeneity yielded ECGT with an estimated molecular mass of 241 to 121 kDa by gel filtration. Enzyme activity and SDS-PAGE analysis indicated that the native ECGT might be a dimer, trimer or tetramer of 60 and/or 58 kDa monomers, and these monomers represent a heterodimer consisting of pairs of 36- or 34-, and 28-kDa subunits. MALDI-TOF-TOF MS showed that the protein SCPL1199 was identified. Epigallocatechin and epicatechin exhibited higher substrate affinities than β-glucogallin. ECGT had an optimum temperature of 30 and maximal reaction rates between pH 4.0 and 6.0. The enzyme reaction was inhibited dramatically by phenylmethylsulfonyl fluoride, HgCl2, and sodium deoxycholate.

Concepts: Molecular biology, Metabolism, Enzyme, Catechin, Camellia sinensis, Green tea, Tannin, White tea

143

Osteopontin (OPN) promotes hepatic fibrosis, and developing therapies targeting OPN expression in settings of hepatic injury holds promise. The polyphenol epigallocatechin-3-gallate (EGCG), found in high concentrations in green tea, downregulates OPN expression through OPN mRNA degradation, but the mechanism is unknown. Previous work has shown that microRNAs can decrease OPN mRNA levels, and other studies have shown that EGCG modulates the expression of multiple microRNAs. In our study, we first demonstrated that OPN induces hepatic stellate cells to transform into an activated state. We then identified three microRNAs which target OPN mRNA: miR-181a, miR-10b, and miR-221. In vitro results show that EGCG upregulates all three microRNAs, and all three microRNAs are capable of down regulating OPN mRNA when administered alone. Interestingly, only miR-221 is necessary for EGCG-mediated OPN mRNA degradation and miR-221 inhibition reduces the effects of EGCG on cell function. In vivo experiments show that thioacetamide (TAA)-induced cell cytotoxicity upregulates OPN expression; treatment with EGCG blocks the effects of TAA. Furthermore, chronic treatment of EGCG in vivo upregulates all three microRNAs equally, suggesting that in more chronic treatment all three microRNAs are involved in modulating OPN expression. We conclude that in in vitro and in vivo models of TAA-induced hepatic fibrosis, EGCG inhibits OPN-dependent injury and fibrosis. EGCG works primarily by upregulating miR-221 to accelerate OPN degradation. EGCG may therefore have utility as a protective agent in settings of liver injury.

Concepts: Messenger RNA, In vivo, Enzyme inhibitor, In vitro, Inhibitor, Catechin, Green tea, Epigallocatechin gallate

109

Evidence continues to demonstrate the role of obesity in prostate carcinogenesis and prognosis, underscoring the need to identify and continue to evaluate the effective interventions to reduce obesity in populations at high risk. The aim of the study was to determine the effect of daily consumption of decaffeinated green tea catechins (GTC) formulation (Polyphenon E® (PolyE)) for 1 year on biomarkers of obesity in men who are at high risk for prostate cancer.

Concepts: Cancer, Obesity, Prostate cancer, Catechin, Camellia sinensis, Green tea, Epigallocatechin gallate, Green tea extract

103

Tea is the world’s oldest and most popular caffeine-containing beverage with immense economic, medicinal, and cultural importance. Here, we present the first high-quality nucleotide sequence of the repeat-rich (80.9%), 3.02-Gb genome of the cultivated tea tree Camellia sinensis. We show that an extraordinarily large genome size of tea tree is resulted from the slow, steady, and long-term amplification of a few LTR retrotransposon families. In addition to a recent whole-genome duplication event, lineage-specific expansions of genes associated with flavonoid metabolic biosynthesis were discovered, which enhance catechin production, terpene enzyme activation, and stress tolerance, important features for tea flavor and adaptation. We demonstrate an independent and rapid evolution of the tea caffeine synthesis pathway relative to cacao and coffee. A comparative study among 25 Camellia species revealed that higher expression levels of most flavonoid- and caffeine- but not theanine-related genes contribute to the increased production of catechins and caffeine and thus enhance tea-processing suitability and tea quality. These novel findings pave the way for further metabolomic and functional genomic refinement of characteristic biosynthesis pathways and will help develop a more diversified set of tea flavors that would eventually satisfy and attract more tea drinkers worldwide.

Concepts: DNA, Gene, Metabolism, Coffee, Caffeine, Catechin, Camellia sinensis, Green tea

49

Dietary supplements (DS) are extensively consumed worldwide despite unproven efficacy. The true incidence of DS-induced liver injury (DSILI) is unknown but is probably under-diagnosed due to the general belief of safety of these products. Reported cases of herbals and DS-induced liver injury are increasing worldwide. The aim of this manuscript is to report a tabular listing with a description of DS associated with hepatotoxicity as well as review the phenotype and severity of DSILI. Natural remedies related to hepatotoxicity can be divided into herbal product-induced liver injury and DS-induced liver injury. In this article, we describe different DS associated with liver injury, some of them manufactured DS containing several ingredients (Herbalife™ products, Hydroxycut™, LipoKinetix™, UCP-1 and OxyELITE™) while others have a single ingredient (green tea extract, linoleic acid, usnic acid, 1,3-Dimethylamylamine, vitamin A, Garcinia cambogia and ma huang). Additional DS containing some of the aforementioned ingredients implicated in liver injury are also covered. We have also included illicit androgenic anabolic steroids for bodybuilding in this work, as they are frequently sold under the denomination of DS despite being conventional drugs.

Concepts: Vitamin, Essential nutrient, Testosterone, Green tea, Vitamin A, Anabolic steroid, Hepatotoxicity, Garcinia

40

Introduction: Caffeine and catechins contained in green tea may have a thermogenic effect favoring weight and body fat loss. The aim of this study is to evaluate the magnitude of the effect of green tea or its extracts (caffeine and catechins) on body weight and body composition. Material and methods: A systematic review and metaanalysis was conducted to determine the magnitude of the effect of green tea or its extracts on body weight (kg), body mass index (BMI) (kg/m2), fat mass (%), and waist and hip circumference (cm). We included studies published between 2000 and 2013, retrieved from PubMed/Medline with the following characteristics: randomized controlled trials (RCTs) of parallel groups (intervention and placebo), randomized, double-blind, and a minimum 12-week follow-up, in healthy individuals of either gender, 18 years or older, with a BMI of 25-40 kg/m2. Quality and risk of bias was assessed for every included study, and the statistical analysis was performed with the Crochrane Collaboration RevMan 5.1.6 software, according to the random effects model with a confidence interval of 95% (95%). It was established that the effect was statistically significant at p < 0.05, and the homogeneity of the studies was assessed using the I2 index. Results: The search strategy retrieved 154 studies, of which only five could be included in the quantitative analysis. The analysis revealed a not statistically significant mean difference (MD) in weight loss in the analyzed sample and subgroups: Asian individuals -0.81 kg (95% CI: -2.76 to 1.13; P = 0.41; I2 = 0%, n = 210), Caucasians -0.73 kg (95% CI: -3.22 to 1.75; P = 0.45; I2 = 0%; n = 91), as well as in the sample as a whole: -0.78 kg (95% CI: -2.31 to 0.75; P = 0.32; I2 = 0%; n = 301). No statistically significant decrease was revealed in BMI in the analyzed sample and subgroups: Asian individuals -0.65 (95% CI: -1.85 to 0.54; P = 0.29; I2 = 0%; n = 71), -0.21 Caucasians (95% CI: -0.96 to 0.53; P = 0.58; I2 = 22%; n = 91), as well as in the sample as a whole: -0.31 kg (95% CI: -0.88 to 0.27; P = 0.30; I2 = 0%; n = 162), nor for the waist circumference 0.08 cm (95% CI: -0.39 to 0.55; P = 0.73; I2 = 3%; n = 301) or hip (95% CI: -1.14 to 0.93; P = 0.85; I2 = 0%; n = 210). In the evaluation of the effect on the percentage of fat mass (FM%), MD was found not statistically significant for population subgroups: Asian individuals -0.76 (95% CI: -1.59 to 0.08; P = 0.08; I2 = 0%; n = 169), Caucasians -0.76 (95% CI: -2.22 to 0.70; P = 0.31; I2 = 36%; n = 93), but a small, although statistically significant, decrease in the overall effect was found -0.76 (95% CI: -1.44 to -0.09; P = 0.03; I2 = 0%; n = 260). Discussion: The statistically significant effect of green tea on the FM% of the entire sample was not clinically relevant, a fact also highlighted in the results of other meta-analysis. Conclusion of the authors: Green tea or gree tea extracts intake or its extracts exerts no statistically significant effect on the weight of overweight or obese adults. There is a small effect on the decrease in the percentage of fat mass, but it is not clinically relevant.

Concepts: Statistics, Obesity, Mass, Body mass index, Meta-analysis, Dieting, Body shape, Green tea

40

Soluble oligomers of the amyloid-β (Aβ) peptide cause neurotoxicity, synaptic dysfunction and memory impairments which underlie Alzheimers disease (AD). The cellular prion protein (PrPC) was recently identified as a high-affinity neuronal receptor for Aβ oligomers. We report that fibrillar Aβ oligomers recognised by the OC antibody, which have been shown to correlate with the onset and severity of AD, bind preferentially to cells and neurons expressing PrPC. The binding of Aβ oligomers to cell surface PrPC, as well as their downstream activation of Fyn kinase, was dependent on the integrity of cholesterol-rich lipid rafts. In SH-SY5Y cells, fluorescence microscopy and co-localisation with sub-cellular markers revealed that the Aβ oligomers co-internalised with PrPC, accumulated in endosomes and subsequently trafficked to lysosomes. The cell surface binding, internalisation and downstream toxicity of Aβ oligomers was dependent on the transmembrane low density lipoprotein receptor-related protein-1 (LRP1). The binding of Aβ oligomers to cell surface PrPC impaired its ability to inhibit the activity of the β-secretase BACE1 which cleaves the amyloid precursor protein to produce Aβ. The green tea polyphenol (-)-epigallocatechin gallate (EGCG) and the red wine extract resveratrol both re-modelled the fibrillar conformation of Aβ oligomers. The resulting non-fibrillar oligomers displayed significantly reduced binding to PrPC-expressing cells and were no longer cytotoxic. These data indicate that soluble, fibrillar Aβ oligomers bind to PrPC in a conformation-dependent manner and require the integrity of lipid rafts and the transmembrane LRP1 for their cytotoxicity, thus revealing potential targets to alleviate the neurotoxic properties of Aβ oligomers in AD.

Concepts: Alzheimer's disease, Protein, Cell, Adenosine triphosphate, Cell membrane, Cytotoxicity, Toxicity, Green tea

33

Decaffeinated green tea (GT) and black tea (BT) polyphenols inhibit weight gain in mice fed an obesogenic diet. Since the intestinal microflora is an important contributor to obesity, it was the objective of this study to determine whether the intestinal microflora plays a role in the anti-obesogenic effect of GT and BT.

Concepts: Gut flora, Nutrition, Obesity, Caffeine, Tea, Camellia sinensis, Green tea, Black tea

32

PURPOSE: The aim of this study was to investigate the effects of 1 day and 7 days ingestion of a green tea extract (GTE) on whole body fat oxidation during moderate-intensity exercise. METHODS: Thirty one males completed two exercise trials (60 min cycle 50% Wmax). Following the baseline trial (Day 0) subjects were randomly assigned to one of three conditions involving a week supplementation of; 1) 7 days placebo (PLA); 2) 6 days of PLA followed by 1 day of GTE (GTE1); 3) 7 days of GTE ingestion (GTE7). The morning after the supplementation week, subjects consumed an additional supplement and completed a second exercise trial (Day 8). VO2 and VCO2 measurements were taken during exercise to calculate whole body fat oxidation rates. Blood samples, for analysis of plasma fatty acids (FAs), glycerol and epigallocatechin gallate (EGCG), were collected at rest and during exercise. RESULTS: On Day 8 the plasma kinetics and maximal plasma concentrations of EGCG were similar in the GTE1 and GTE7 group (206 ± 28 and 216 ± 25 ng·mL-1 respectively). One day of GTE ingestion did not affect markers of lipolysis during the exercise bout. Seven days of GTE ingestion significantly increased plasma glycerol during exercise (P=0.045) and plasma FAs during exercise (P=0.020) as well as at rest (P= 0.046). However, fat oxidation did not change in any of the groups. CONCLUSIONS: There was no effect of 1 day GTE ingestion on markers of lipolysis or fat oxidation during exercise. Seven days of GTE ingestion increased lipolysis, indicated by increased plasma FA and glycerol concentrations, but did not result in significant changes in fat oxidation.

Concepts: Fatty acid, Triglyceride, Fat, Ester, Green tea, Glycerol, Epigallocatechin gallate, Green tea extract